skip to main content

Search for: All records

Creators/Authors contains: "Roman, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 22, 2022
  2. The Wire Flyer towed vehicle is a new platform able to collect high-resolution water column sections. The vehicle is motivated by a desire to effectively capture spatial structures at the submesoscale. The vehicle fills a niche that is not achieved by other existing towed and repeat profiling systems. The Wire Flyer profiles up and down along a ship-towed cable autonomously using controllable wings for propulsion. At ship speeds between 2 and 5 kt (1.02–2.55ms21), the vehicle is able to profile over prescribed depth bands down to 1000 m. The vehicle carries sensors for conductivity, temperature, depth, oxygen, turbidity, chlorophyll, pH,more »and oxidation reduction potential. During normal operations the vehicle is typically commanded to cover vertical regions between 300 and 400min height with profiles that repeat at kilometer spacing. The vertical profiling speed can be user specified up to 150mmin21. The high-density sampling capability at depths below the upper few hundred meters makes the vehicle distinct from other systems. During operations an acoustic modem is used to communicate with the vehicle to provide status information, data samples, and the ability to modify the sampling pattern. This paper provides an overview of the vehicle system, describes its operation, and presents results from several cruises.« less
  3. Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slightmore »(≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function.« less
  4. Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slightmore »(≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function.« less