skip to main content

Search for: All records

Creators/Authors contains: "Romero-Isart, O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Time of flight is an intuitive way to determine the velocity of particles and lies at the heart of many capabilities ranging from mass spectrometry to fluid flow measurements. Here we show time-of-flight imaging can realize tomography of a quantum state of motion of a single trapped atom. Tomography of motion requires studying the phase space spanned by both position and momentum. By combining time-of-flight imaging with coherent evolution of the atom in an optical tweezer trap, we are able to access arbitrary quadratures in phase space without relying on coupling to a spin degree of freedom. To create non-classical motional states, we harness quantum tunneling in the versatile potential landscape of optical tweezers, and our tomography both demonstrates Wigner function negativity and assesses coherence of non-stationary states. Our demonstrated tomography concept has wide applicability to a range of particles and will enable characterization of non-classical states of more complex systems or massive dielectric particles.
    Free, publicly-accessible full text available July 1, 2023
  2. Free, publicly-accessible full text available June 1, 2023