skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosa, CA"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The yeast genusTorulaspora(subphylumSaccharomycotina, familySaccharomycetaceae) is mostly known from its type species,T. delbrueckii, a frequent colonizer of wine and sourdough bread fermentations. The genus currently contains 10 species that are typically found in various natural terrestrial environments in temperate and tropical climates. Here we employ taxogenomic analyses to investigate a large collection ofTorulasporastrains obtained in multiple surveys we carried out in Asia, Australasia, North America, South America, and Europe, and to which we added several strains maintained in culture collections. Our analyses detected twelve novel species that are formally described here, thereby more than doubling the species diversity ofTorulaspora. We also sketch a genotype-phenotype map for the genus and show how the complex relationship between key genes and the physiological traits they control both between and within species. This remarkable increase in the number of species in the genusTorulasporahighlights how limited the current inventory of fungal taxa is. It also shows how integrated taxogenomic approaches can foster the assessment of species circumscriptions in fungi. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract In the face of ongoing marine deoxygenation, understanding timescales and drivers of past oxygenation change is of critical importance. Marine sediment cores from tiered silled basins provide a natural laboratory to constrain timing and implications of oxygenation changes across multiple depths. Here, we reconstruct oxygenation and environmental change over time using benthic foraminiferal assemblages from sediment cores from three basins across the Southern California Borderlands: Tanner Basin (EW9504‐09PC, 1,194 m water depth), San Nicolas Basin (EW9504‐08PC, 1,442 m), and San Clemente Basin (EW9504‐05PC,1,818 m). We utilize indicator taxa, community ecology, and an oxygenation transfer function to reconstruct past oxygenation, and we directly compare reconstructed dissolved oxygen to modern measured dissolved oxygen. We generate new, higher resolution carbon and oxygen isotope records from planktic (Globigerina bulloides) and benthic foraminifera (Cibicides mckannai) from Tanner Basin. Geochemical and assemblage data indicate limited ecological and environmental change through time in each basin across the intervals studied. Early to mid‐Holocene (11.0–4.7 ka) oxygenation below 1,400 m (San Clemente and San Nicolas) was relatively stable and reduced relative to modern. San Nicolas Basin experienced a multi‐centennial oxygenation episode from 4.7 to 4.3 ka and oxygenation increased in Tanner Basin gradually from 1.7 to 0.8 ka. Yet across all three depths and time intervals studied, dissolved oxygen is consistently within a range of intermediate hypoxia (0.5–1.5 ml L−1[O2]). Variance in reconstructed dissolved oxygen was similar to decadal variance in modern dissolved oxygen and reduced relative to Holocene‐scale changes in shallower basins. 
    more » « less