skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rosch-Grace, Dominic Straub"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Quantum computing is poised to dramatically change the computational landscape, worldwide. Quantum computers can solve complex problems that are, at least in some cases, beyond the ability of even advanced future classical-style computers. In addition to being able to solve these classical computer-unsolvable problems, quantum computers have demonstrated a capability to solve some problems (such as prime factoring) much more efficiently than classical computing. This will create problems for encryption techniques, which depend on the difficulty of factoring for their security. Security, scientific, and other applications will require access to quantum computing resources to access their unique capabilities, speed and economic (aggregate computing time cost) benefits. Many scientific applications, as well as numerous other ones, use grid computing to provide benefits such as scalability and resource access. As these applications may benefit from quantum capabilities - and some future applications may require quantum capabilities - identifying how to integrate quantum computing systems into grid computing environments is critical. This paper discusses the benefits of grid-connected quantum computers and what is required to achieve this. 
    more » « less