skip to main content


Search for: All records

Creators/Authors contains: "Rosen, Andrew S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The first synthesis and comprehensive characterization of two vinyl tetrazine‐linked covalent organic frameworks (COF), TA‐COF‐1 and TA‐COF‐2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2g−1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light‐driven applications. These advantages enable TA‐COFs to act as reusable metal‐free photocatalysts in the arylboronic acids oxidation and light‐induced coupling of benzylamines. In addition, these TA‐COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3vapor. Further, the TA‐COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA‐COFs can also degrade 5‐nitro‐1,2,4‐triazol‐3‐one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight‐driven photocatalytic process; thus, revealing dual functionality of the protonated TA‐COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF‐based materials, facilitating advances in catalysis, sensing, and other related fields.

     
    more » « less
  2. Abstract

    Computational materials discovery efforts are enabled by large databases of properties derived from high-throughput density functional theory (DFT), which now contain millions of calculations at the generalized gradient approximation (GGA) level of theory. It is now feasible to carry out high-throughput calculations using more accurate methods, such as meta-GGA DFT; however recomputing an entire database with a higher-fidelity method would not effectively leverage the enormous investment of computational resources embodied in existing (GGA) calculations. Instead, we propose here a general procedure by which higher-fidelity, low-coverage calculations (e.g., meta-GGA calculations for selected chemical systems) can be combined with lower-fidelity, high-coverage calculations (e.g., an existing database of GGA calculations) in a robust and scalable manner. We then use legacy PBE(+U) GGA calculations and new r2SCAN meta-GGA calculations from the Materials Project database to demonstrate that our scheme improves solid and aqueous phase stability predictions, and discuss practical considerations for its implementation.

     
    more » « less
  3. Abstract

    The interactions between uranium and non‐innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium‐based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self‐assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non‐innocent linkers. We report the synthesis of the MOFNU‐1700, assembled from U4+‐paddlewheel nodes and catecholate‐based linkers. We propose this highly unusual structure, which contains two U4+ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X‐ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

     
    more » « less
  4. Abstract

    The interactions between uranium and non‐innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium‐based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self‐assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non‐innocent linkers. We report the synthesis of the MOFNU‐1700, assembled from U4+‐paddlewheel nodes and catecholate‐based linkers. We propose this highly unusual structure, which contains two U4+ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X‐ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

     
    more » « less
  5. Metal–organic frameworks (MOFs) are a class of nanoporous materials with highly tunable structures in terms of both chemical composition and topology. Due to their tunable nature, high‐throughput computational screening is a particularly appealing method to reduce the time‐to‐discovery of MOFs with desirable physical and chemical properties. In this work, a fully automated, high‐throughput periodic density functional theory (DFT) workflow for screening promising MOF candidates was developed and benchmarked, with a specific focus on applications in catalysis. As a proof‐of‐concept, we use the high‐throughput workflow to screen MOFs containing open metal sites (OMSs) from the Computation‐Ready, Experimental MOF database for the oxidative C—H bond activation of methane. The results from the screening process suggest that, despite the strong C—H bond strength of methane, the main challenge from a screening standpoint is the identification of MOFs with OMSs that can be readily oxidized at moderate reaction conditions. © 2019 Wiley Periodicals, Inc.

     
    more » « less