skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosenheim, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The functioning of interdependent civil infrastructure systems in the aftermath of a disruptive event is critical to the performance and vitality of any modern urban community. Post-event stressors and chaotic circumstances, time limitations, and complexities in the community recovery process highlight the necessity for a comprehensive decision-making framework at the community-level for post-event recovery management. Such a framework must be able to handle large-scale scheduling and decision processes, which involve difficult control problems with large combinatorial decision spaces. This study utilizes approximate dynamic programming algorithms along with heuristics for the identification of optimal community recovery actions following the occurrence of an extreme earthquake event. The proposed approach addresses the curse of dimensionality in its analysis and management of multi-state, large-scale infrastructure systems. Furthermore, the proposed approach can consider the cur-rent recovery policies of responsible public and private entities within the community and shows how their performance might be improved. A testbed community coarsely modeled after Gilroy, California, is utilized as an illustrative example. While the illustration provides optimal policies for the Electrical Power Network serving Gilroy following a severe earthquake, preliminary work shows that the methodology is computationally well suited to other infrastructure systems and hazards. 
    more » « less
  2. The functioning of interdependent civil infrastructure systems in the aftermath of a disruptive event is critical to the performance and vitality of any modern urban community. Post-event stressors and chaotic circumstances, time limitations, and complexities in the community recovery process highlight the necessity for a comprehensive decision-making framework at the community-level for post-event recovery management. Such a framework must be able to handle large-scale scheduling and decision processes, which involve difficult control problems with large combinatorial decision spaces. This study utilizes approximate dynamic programming algorithms along with heuristics for the identification of optimal community recovery actions following the occurrence of an extreme earthquake event. The proposed approach addresses the curse of dimensionality in its analysis and management of multi-state, large-scale infrastructure systems. Furthermore, the proposed approach can consider the cur-rent recovery policies of responsible public and private entities within the community and shows how their performance might be improved. A testbed community coarsely modeled after Gilroy, California, is utilized as an illustrative example. While the illustration provides optimal policies for the Electrical Power Network serving Gilroy following a severe earthquake, preliminary work shows that the methodology is computationally well suited to other infrastructure systems and hazards. 
    more » « less