Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We use a high-precision radial velocity survey of FGKM stars to study the conditional occurrence of two classes of planets: close-in small planets (0.023–1 au, 2–30 M ⊕ ) and distant giant planets (0.23–10 au, 30–6000 M ⊕ ). We find that 41 − 13 + 15 % of systems with a close-in, small planet also host an outer giant, compared to 17.6 − 1.9 + 2.4 % for stars irrespective of small planet presence. This implies that small planet hosts may be enhanced in outer giant occurrences compared to all stars with 1.7 σ significance. Conversely, we estimate that 42 − 13 + 17 % of cold giant hosts also host an inner small planet, compared to 27.6 − 4.8 + 5.8 % of stars irrespective of cold giant presence. We also find that more massive and close-in giant planets are not associated with small inner planets. Specifically, our sample indicates that small planets are less likely to have outer giant companions more massive than approximately 120 M ⊕ and within 0.3–3 au, than to have less massive or more distant giant companions, with ∼2.2 σ confidence. This implies that massive gas giants within 0.3–3 au may suppress inner small planet formation. Additionally, we compare the host-star metallicity distributions for systems with only small planets and those with both small planets and cold giants. In agreement with previous studies, we find that stars in our survey that only host small planets have a metallicity distribution that is consistent with the broader solar-metallicity-median sample, while stars that host both small planets and gas giants are distinctly metal rich with ∼2.3 σ confidence.more » « less
-
Abstract We combine multiple campaigns of K2 photometry with precision radial velocity measurements from Keck-HIRES to measure the masses of three sub-Neptune-sized planets. We confirm the planetary nature of the massive sub-Neptune K2-182 b ( P b = 4.7 days, R b = 2.69 R ⊕ ) and derive refined parameters for K2-199 b and c ( P b = 3.2 days, R b = 1.73 R ⊕ and P c = 7.4 days, R c = 2.85 R ⊕ ). These planets provide valuable data points in the mass–radius plane, especially as TESS continues to reveal an increasingly diverse sample of sub-Neptunes. The moderately bright ( V = 12.0 mag) early K dwarf K2-182 (EPIC 211359660) was observed during K2 campaigns 5 and 18. We find that K2-182 b is potentially one of the densest sub-Neptunes known to date (20 ± 5 M ⊕ and 5.6 ± 1.4 g cm −3 ). The K5V dwarf K2-199 (EPIC 212779596; V = 12.3 mag), observed in K2 campaigns 6 and 17, hosts two recently confirmed planets. We refine the orbital and planetary parameters for K2-199 b and c by modeling both campaigns of K2 photometry and adding 12 Keck-HIRES measurements to the existing radial velocity data set ( N = 33). We find that K2-199 b is likely rocky, at 6.9 ± 1.8 M ⊕ and 7.2 − 2.0 + 2.1 g cm −3 , and that K2-199 c has an intermediate density at 12.4 ± 2.3 M ⊕ and 2.9 − 0.6 + 0.7 g cm −3 . We contextualize these planets on the mass–radius plane, discuss a small but intriguing population of “superdense” sub-Neptunes ( R p < 3 R ⊕ , M p >20 M ⊕ ), and consider our prospects for the planets’ atmospheric characterization.more » « less
-
We present high-speed optical observations of the nova ASASSN-17hx, taken both immediately after its discovery and close to its first peak in brightness, to search for second-minute pulsations associated with the convective eddy turnover timescale within the nova envelope. We do not detect any periodic signal with greater than 3σ significance. Through injection and recovery, we rule out periodic signals of fractional amplitude >7.08 × 10^-4 on timescales of 2 s and fractional amplitude >1.06 × 10^-3 on timescales of 10 minutes. Additional observations of novae are planned to further constrain ongoing simulations of the launch and propagation of nova winds.more » « less
-
Abstract The detection of satellites around extrasolar planets, so called exomoons, remains a largely unexplored territory. In this work, we study the potential of detecting these elusive objects from radial velocity monitoring of self-luminous, directly imaged planets. This technique is now possible thanks to the development of dedicated instruments combining the power of high-resolution spectroscopy and high-contrast imaging. First, we demonstrate a sensitivity to satellites with a mass ratio of 1%–4% at separations similar to the Galilean moons from observations of a brown-dwarf companion (HR 7672 B;Kmag= 13; 0.″7 separation) with the Keck Planet Imager and Characterizer (R∼ 35,000 in theKband) at the W. M. Keck Observatory. Current instrumentation is therefore already sensitive to large unresolved satellites that could be forming from gravitational instability akin to binary star formation. Using end-to-end simulations, we then estimate that future instruments such as the Multi-Object Diffraction-limited High-resolution Infrared Spectrograph, planned for the Thirty Meter Telescope, should be sensitive to satellites with mass ratios of ∼10−4. Such small moons would likely form in a circumplanetary disk similar to the Jovian satellites in the solar system. Looking for the Rossiter–McLaughlin effect could also be an interesting pathway to detecting the smallest moons on short orbital periods. Future exomoon discoveries will allow precise mass measurements of the substellar companions that they orbit and provide key insight into the formation of exoplanets. They would also help constrain the population of habitable Earth-sized moons orbiting gas giants in the habitable zone of their stars.more » « less