Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The search for neutrino events in correlation with 42 most intense fast radio bursts (FRBs) has been performed using the Borexino dataset from 05/2007 to 06/2021. We have searched for signals with visible energies above 250 keV within a time window of $$\pm \, 1000$$ ± 1000 s corresponding to detection time of a particular FRB. We also applied an alternative approach based on searching for specific shapes of neutrino-electron scattering spectra in the full exposure data of the Borexino detector. In particular, two incoming neutrino spectra were considered: the monoenergetic line and the spectrum expected from supernovae. The samemore »Free, publicly-accessible full text available March 1, 2023
-
Free, publicly-accessible full text available March 1, 2023
-
Free, publicly-accessible full text available March 1, 2023
-
Abstract A double-phase argon Time Projection Chamber (TPC), with an active mass of 185 g, has been designed and constructed for the Recoil Directionality (ReD) experiment. The aim of the ReD project is to investigate the directional sensitivity of argon-based TPCs via columnar recombination to nuclear recoils in the energy range of interest (20– $$200\,\hbox {keV}_{nr}$$ 200 keV nr ) for direct dark matter searches. The key novel feature of the ReD TPC is a readout system based on cryogenic Silicon Photomultipliers (SiPMs), which are employed and operated continuously for the first time in an argon TPC. Over the course ofmore »Free, publicly-accessible full text available November 1, 2022
-
Abstract Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $$^{11}$$ 11 C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $$^{11}$$ 11 C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of thismore »Free, publicly-accessible full text available December 1, 2022
-
Abstract Neutrinos emitted in the carbon, nitrogen, oxygen (CNO) fusion cycle in the Sun are a sub-dominant, yet crucial component of solar neutrinos whose flux has not been measured yet. The Borexino experiment at the Laboratori Nazionali del Gran Sasso (Italy) has a unique opportunity to detect them directly thanks to the detector’s radiopurity and the precise understanding of the detector backgrounds. We discuss the sensitivity of Borexino to CNO neutrinos, which is based on the strategies we adopted to constrain the rates of the two most relevant background sources, $$pep$$ pep neutrinos from the solar pp -chain and $$^{210}$$more »