skip to main content

Search for: All records

Creators/Authors contains: "Rossman, George R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Walter et al . issue a number of critical comments on our report about the discovery of davemaoite to the end that they believe to show that our results do not provide compelling evidence for the presence of davemaoite in the type specimen and that the hosting diamond had formed in the lithosphere. Their claim is based on a misinterpretation of the diffraction data contained in the paper, an insufficient analysis of the compositional data that disregards the three-dimensional distribution of inclusions, and the arbitrary assumption that Earth’s mantle shows no lateral variations in temperature, inconsistent with state-of-the-art assessments ofmore »mantle temperature variations and with their own published results.« less
    Free, publicly-accessible full text available May 6, 2023
  2. Free, publicly-accessible full text available November 1, 2022
  3. Calcium silicate perovskite, CaSiO 3 , is arguably the most geochemically important phase in the lower mantle, because it concentrates elements that are incompatible in the upper mantle, including the heat-generating elements thorium and uranium, which have half-lives longer than the geologic history of Earth. We report CaSiO 3 -perovskite as an approved mineral (IMA2020-012a) with the name davemaoite. The natural specimen of davemaoite proves the existence of compositional heterogeneity within the lower mantle. Our observations indicate that davemaoite also hosts potassium in addition to uranium and thorium in its structure. Hence, the regional and global abundances of davemaoite influencemore »the heat budget of the deep mantle, where the mineral is thermodynamically stable.« less
    Free, publicly-accessible full text available November 12, 2022