skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rotavera, Brandon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 18, 2025
  2. Cyclic ethers undergo H-abstraction reactions that yield carbon-centered radicals (Ṙ). The ether functional group introduces a competing set of reaction pathways: ring-opening and reaction with O2 to form peroxy radical adducts, ROȮ, which can result in stereoisomers. ROȮ derived from cyclic ethers can subsequently isomerize into hydroperoxy-substituted carbon-centered radicals, Q̇OOH, which can also undergo ring-opening reactions or pathways prototypical to alkyl oxidation. The balance of reactions that unfold from cyclic ether radicals depends intrinsically on the size of the ring and the structure of any substituents retained in the formation step. The present work examines unimolecular reactions of peroxy radicals from 2-ethyloxetane, a four-membered cyclic ether formed during n-pentane oxidation, and reveals stereoisomer-specific reaction pathways. Automated quantum chemical computations were conducted on constitutional and stereoisomers of ROȮ derived from O2-addition to 2-ethyloxetanyl radicals. Pressure-dependent rate calculations were conducted by solving the master equation from 300 – 1000 K and from 0.01 – 100 atm. Branching fractions were then calculated at 650 K and 825 K, the peak temperatures at which cyclic ethers form in alkane oxidation. Isomer-specific reaction pathways of anti-ROO and syn-ROO and resulting impact on radical production were evident. Q̇OOH ring-opening reactions were significant as were rates of bi-cyclic ether formation common in alkyl radical oxidation. Detailed prescription of rates and reaction mechanisms describing cyclic ether consumption mechanisms are important to enable accurate modeling of reactions of ephemeral Q̇OOH radicals because of the direct, isomer-specific formation pathways. In addition, detailed cyclic ether mechanisms are required to reduce mechanism truncation error. The results herein provide insight on connections between cyclic ethers and chain-reaction pathways yielding ȮH, HOȮ, and other radicals, in addition to pathways leading to performic acid (HOOC(=O)H), the decomposition of which via O–O scission results in an exothermic, chain-branching step. 
    more » « less
  3. Cyclic ethers are relevant as next-generation biofuels and are also combustion intermediates that follow directly from unimolecular decomposition of hydroperoxyalkyl radicals. Accordingly, cyclic ether reactions are crucial to understanding low-temperature oxidation for advanced compression-ignition applications in combustion where peroxy radials are central to degenerate chain-branching pathways. Reaction mechanisms relevant to low-temperature ignition of cyclic ethers contain intrinsic complexities due to competing reactions of carbon-centered radicals formed in the initiation step undergoing either ring-opening or reactions with O2. To gain insight into mechanisms describing tetrahydropyran combustion, ignition delay time and speciation measurements were conducted. The present work integrates measurements below 1000 K of ignition delay times and species profiles in rapid compression machine experiments from 5 – 20 bar, spanning several equivalence ratios, with jet-stirred reactor experiments at 1 bar and stoichiometric conditions. The experiments are complemented with the development of the first chemical kinetics mechanism for tetrahydropyran that includes peroxy radical reactions, including O2-addition to tetrahydropyranyl (Ṙ), HOȮ-elimination from tetrahydropyranylperoxy (ROȮ) and hydroperoxytetrahydropyranyl (Q̇OOH), bi-cyclic ether formation, β-scission of Q̇OOH, and ketohydroperoxide formation. Negative-temperature coefficient (NTC) behavior is exhibited in the experiments and is reflected in the model predictions, which were within experimental uncertainty for several conditions. Disparities between the model predictions and experiments were analyzed via sensitivity analysis to identify contributing factors from elementary reactions. The analyses examine the role of ring-opening products of tetrahydropyranyl and hydroperoxytetrahydropyranyl isomers to identify reaction mechanisms that may contribute to model uncertainties. The detection of 66 species in the JSR experiments indicates that tetrahydropyran undergoes complex reaction networks, which includes interconnected reactions of aldehyde radicals and alkyl radicals. Primary radicals pentanal-5-yl and butanal-4-yl are derived from ring-opening reactions of tetrahydropyran-1-yl and undergo subsequent decarbonylation to form alkyl radicals (1-butyl and 1-propyl) that undergo reaction with O2 and may contribute to chain-branching, in addition to pathways involving tetrahydropyran-derived ketohydroperoxides. 
    more » « less
  4. 2,4,dimethyloxetane is an important cyclic ether intermediate that is produced from hydroperoxyalkyl (QOOH) radicals in the low-temperature combustion of n -pentane. However, the reaction mechanisms and rates of consumption pathways remain unclear. In the present work, the pressure- and temperature-dependent kinetics of seven cyclic ether peroxy radicals, which stem from 2,4,dimethyloxetane via H-abstraction and O 2 addition, were determined. The automated kinetic workflow code, KinBot, was used to model the complexity of the chemistry in a stereochemically resolved manner and solve the resulting master equations from 300–1000 K and from 0.01–100 atm. The main conclusions from the calculations include (i) diastereomeric cyclic ether peroxy radicals show significantly different reactivities, (ii) the stereochemistry of the peroxy radical determines which QOOH isomerization steps are possible, (iii) conventional QOOH decomposition pathways, such as cyclic ether formation and HO 2 elimination, compete with ring-opening reactions, which primarily produce OH radicals, the outcome of which is sensitive to stereochemistry. Ring-opening reactions lead to unique products, such as unsaturated, acyclic peroxy radicals, that form direct connections with species present in other chemical kinetics mechanisms through "cross-over" reactions that may complicate the interpretation of experimental results from combustion of n-pentane and, by extension, other alkanes. For example, one cross-over reaction involving 1-hydroperoxy-4-pentanone-2-yl produces 2-(hydroperoxymethyl)-3-butanone-1-yl, which is an iso-pentane-derived ketohydroperoxide (KHP). At atmospheric pressure, the rate of chemical reactions of all seven peroxy radicals compete with that of collisional stabilization, resulting in well-skipping reactions. However, at 100 atm, only one out of seven peroxy radicals undergoes significant well-skipping reactions. The rates produced from the master equation calculations provide the first foundation for the development of detailed sub-mechanisms for cyclic ether intermediates. In addition, analysis of the complex reaction mechanisms of 2,4-dimethyloxetane-derived peroxy radicals provides insights into the effects of stereoisomers on reaction pathways and product yields. 
    more » « less
  5. Organic aerosol (OA) is an air pollutant ubiquitous in urban atmospheres. Urban OA is usually apportioned into primary OA (POA), mostly emitted by mobile sources, and secondary OA (SOA), which forms in the atmosphere due to oxidation of gas-phase precursors from anthropogenic and biogenic sources. By performing coordinated measurements in the particle phase and the gas phase, we show that the alkylperoxy radical chemistry that is responsible for low-temperature ignition also leads to the formation of oxygenated POA (OxyPOA). OxyPOA is distinct from POA emitted during high-temperature ignition and is chemically similar to SOA. We present evidence for the prevalence of OxyPOA in emissions of a spark-ignition engine and a next-generation advanced compression-ignition engine, highlighting the importance of understanding OxyPOA for predicting urban air pollution patterns in current and future atmospheres. 
    more » « less
  6. null (Ed.)
  7. Abstract A synthesis of a δ‐ketohydroperoxide is described, addressing potential functional‐group compatibilities in these elusive species relevant to combustion and atmospheric chemistries. The hydroperoxide is installed via sulfonylhydrazine substitution, which was found to be more effective than displacement of secondary halides. As part of this protocol, it was observed that 1,2‐dimethoxyethane is an advantageous medium for the reaction, avoiding the formation of a tetrahydrofuran hydroperoxide side product. This discovery facilitated the multigram synthesis (6 steps, 41 % yield overall) and discrete characterization of the target δ‐ketohydroperoxide. 
    more » « less