Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vlachos, Andreas; Augenstein, Isabelle (Ed.)In this paper, we seek to improve the faithfulness of TempRel extraction models from two perspectives. The first perspective is to extract genuinely based on contextual description. To achieve this, we propose to conduct counterfactual analysis to attenuate the effects of two significant types of training biases: the event trigger bias and the frequent label bias. We also add tense information into event representations to explicitly place an emphasis on the contextual description. The second perspective is to provide proper uncertainty estimation and abstain from extraction when no relation is described in the text. By parameterization of Dirichlet Prior over the model-predicted categorical distribution, we improve the model estimates of the correctness likelihood and make TempRel predictions more selective. We also employ temperature scaling to recalibrate the model confidence measure after bias mitigation. Through experimental analysis on MATRES, MATRES-DS, and TDDiscourse, we demonstrate that our model extracts TempRel and timelines more faithfully compared to SOTA methods, especially under distribution shifts.more » « less
-
Recent research has shown that integrating domain knowledge into deep learning architectures is effective – it helps reduce the amount of required data, improves the accuracy of the models’ decisions, and improves the interpretability of models. However, the research community is missing a convened benchmark for systematically evaluating knowledge integration methods. In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision. In all cases, we model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints. We report the results of these models using a new set of extended evaluation criteria in addition to the task performances for a more in-depth analysis. This effort provides a framework for a more comprehensive and systematic comparison of constraint integration techniques and for identifying related research challenges. It will facilitate further research for alleviating some problems of state-of-the-art neural models.more » « less
-
Natural language often describes events in different granularities, such that more coarse-grained (goal) events can often be decomposed into fine-grained sequences of (step) events. A critical but overlooked challenge in understanding an event process lies in the fact that the step events are not equally important to the central goal. In this paper, we seek to fill this gap by studying how well current models can understand the essentiality of different step events towards a goal event. As discussed by cognitive studies, such an ability enables the machine to mimic human’s commonsense reasoning about preconditions and necessary efforts of daily-life tasks. Our work contributes with a high-quality corpus of (goal, step) pairs from a community guideline website WikiHow, where the steps are manually annotated with their essentiality w.r.t. the goal. The high IAA indicates that humans have a consistent understanding of the events. Despite evaluating various statistical and massive pre-trained NLU models, we observe that existing SOTA models all perform drastically behind humans, indicating the need for future investigation of this crucial yet challenging task.more » « less
-
This tutorial targets researchers and practitioners who are interested in ML technologies for NLP from indirect supervision. In particular, we will present a diverse thread of indirect supervision studies that try to answer the following questions: (i) when and how can we provide supervision for a target task T, if all we have is data that corresponds to a “related” task T′? (ii) humans do not use exhaustive supervision; they rely on occasional feedback, and learn from incidental signals from various sources; how can we effectively incorporate such supervision in machine learning? (iii) how can we leverage multi-modal supervision to help NLP? To the end, we will discuss several lines of research that address those challenges, including (i) indirect supervision from T ′ that handles T with outputs spanning from a moderate size to an open space, (ii) the use of sparsely occurring and incidental signals, such as partial labels, noisy labels, knowledge-based constraints, and cross-domain or cross-task annotations—all having statistical associations with the task, (iii) principled ways to measure and understand why these incidental signals can contribute to our target tasks, and (iv) indirect supervision from vision-language signals. We will conclude the tutorial by outlining directions for further investigation.more » « less
-
We consider the problem of Vision-and-Language Navigation (VLN). The majority of current methods for VLN are trained end-to-end using either unstructured memory such as LSTM, or using cross-modal attention over the egocentric observations of the agent. In contrast to other works, our key insight is that the association between language and vision is stronger when it occurs in explicit spatial representations. In this work, we propose a cross-modal map learning model for vision-and-language navigation that first learns to predict the top-down semantics on an egocentric map for both observed and unobserved regions, and then predicts a path towards the goal as a set of way-points. In both cases, the prediction is informed by the language through cross-modal attention mechanisms. We experimentally test the basic hypothesis that language-driven navigation can be solved given a map, and then show competitive results on the full VLN-CE benchmark.more » « less
-
This tutorial targets researchers and practitioners who are interested in AI and ML technologies for structural information extraction (IE) from unstructured textual sources. Particularly, this tutorial will provide audience with a systematic introduction to recent advances of IE, by answering several important research questions. These questions include (i) how to develop an robust IE system from noisy, insufficient training data, while ensuring the reliability of its prediction? (ii) how to foster the generalizability of IE through enhancing the system’s cross-lingual, cross-domain, cross-task and cross-modal transferability? (iii) how to precisely support extracting structural information with extremely fine-grained, diverse and boundless labels? (iv) how to further improve IE by leveraging indirect supervision from other NLP tasks, such as NLI, QA or summarization, and pre-trained language models? (v) how to acquire knowledge to guide the inference of IE systems? We will discuss several lines of frontier research that tackle those challenges, and will conclude the tutorial by outlining directions for further investigation.more » « less
-
Spatial Reasoning from language is essential for natural language understanding. Supporting it requires a representation scheme that can capture spatial phenomena encountered in language as well as in images and videos. Existing spatial representations are not sufficient for describing spatial configurations used in complex tasks. This paper extends the capabilities of existing spatial representation languages and increases coverage of the semantic aspects that are needed to ground spatial meaning of natural language text in the world. Our spatial relation language is able to represent a large, comprehensive set of spatial concepts crucial for reasoning and is designed to support composition of static and dynamic spatial configurations. We integrate this language with the Abstract Meaning Representation (AMR) annotation schema and present a corpus annotated by this extended AMR. To exhibit the applicability of our representation scheme, we annotate text taken from diverse datasets and show how we extend the capabilities of existing spatial representation languages with fine-grained decomposition of semantics and blend it seamlessly with AMRs of sentences and discourse representations as a whole.more » « less