Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Developing effective catalysis to address end-of-life Nylon pollution is urgent yet remains underdeveloped. Nylon-6 is a resilient synthetic plastic and a major contributor to ocean pollution. Here, we report a metallocene catalytic system based on earth-abundant early transition and lanthanide metals that mediates Nylon-6 depolymerization at unprecedented rates up to 810 (ε-caprolactam)$ mol(Cat.)1$h1 at 240C in R99% yield. This solventless process operates with catalyst loadings as low as 0.04 mol % at temperatures as low as 220C—themildest Nylon-6 depolymerization conditions reported to date. This metallocene catalysis can be carried out in a simulated continuous process, and the resulting ε-caprolactam can be re-polymerized to higher-quality Nylon-6. Experimental and DFT analyses identify effective depolymerization pathways involving catalytic intra-Nylon-chain ‘‘unzipping’’ assisted by p-ligand effects and inter-chain ‘‘hopping.’’ A robust chelating ansa-yttrocene is particularly effective in depolymerizing diverse commodity end-of-life articles, such as fishing nets, carpets, clothing, and plastic mixtures.more » « less
-
Carbonyl bond hydroboration is a valuable synthetic route to functionalized alcohols but relies on sometimes unselective and sluggish reagents. While rapid and selective aldehyde and ketone hydroboration mediated by trisamidolanthanide catalysts is known, the origin of the selectivity is not well-understood and is the subject of this contribution. Here the aldehyde and ketone HBpin hydroboration reaction mechanisms catalyzed by La[N(SiMe 3 ) 2 ] 3 are investigated both experimentally and theoretically. The results support initial carbonyl oxygen coordination to the acidic La center, followed by intramolecular ligand-assisted hydroboration of the carbonyl moiety by bound HBpin. Interestingly, ketone hydroboration has a higher energetic barrier than that of aldehydes due to the increased steric encumbrance and decreased electrophilicity. Utilizing NMR spectroscopy and X-ray diffraction, a bidentate acylamino lanthanide complex associated with the aldehyde hydroboration is isolated and characterized, consistent with the relative reaction rates. Furthermore, an aminomonoboronate–lanthanide complex produced when the La catalyst is exposed to excess HBpin is isolated and characterized by X-ray diffraction, illuminating unusual aminomonoboronate coordination. These results shed new light on the origin of the catalytic activity patterns, reveal a unique ligand-assisted hydroboration pathway, and uncover previously unknown catalyst deactivation pathways.more » « less
-
Abstract Nylon‐6 is selectively depolymerized to the parent monomer ϵ‐caprolactam by the readily accessible and commercially available lanthanide trisamido catalysts Ln(N(TMS)2)3(Ln=lanthanide). The depolymerization process is solvent‐free, near quantitative, highly selective, and operates at the lowest Nylon‐6 to ϵ‐caprolactam depolymerization temperature reported to date. The catalytic activity of the different lanthanide trisamides scales with the Ln3+ionic radius, and this process is effective with post‐consumer Nylon‐6 as well as with Nylon‐6+polyethylene, polypropylene or polyethylene terephthalate mixtures. Experimental kinetic data and theoretical (DFT) mechanistic analyses suggest initial deprotonation of a Nylon terminal amido N−H bond, which covalently binds the catalyst to the polymer, followed by a chain‐end back‐biting process in which ϵ‐caprolactam units are sequentially extruded from the chain end.
-
Abstract Nylon‐6 is selectively depolymerized to the parent monomer ϵ‐caprolactam by the readily accessible and commercially available lanthanide trisamido catalysts Ln(N(TMS)2)3(Ln=lanthanide). The depolymerization process is solvent‐free, near quantitative, highly selective, and operates at the lowest Nylon‐6 to ϵ‐caprolactam depolymerization temperature reported to date. The catalytic activity of the different lanthanide trisamides scales with the Ln3+ionic radius, and this process is effective with post‐consumer Nylon‐6 as well as with Nylon‐6+polyethylene, polypropylene or polyethylene terephthalate mixtures. Experimental kinetic data and theoretical (DFT) mechanistic analyses suggest initial deprotonation of a Nylon terminal amido N−H bond, which covalently binds the catalyst to the polymer, followed by a chain‐end back‐biting process in which ϵ‐caprolactam units are sequentially extruded from the chain end.