skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rothrock, Blaine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manoomin, the Ojibwe word for Northern Wild Rice, is a culturally significant food source native to the Western Great Lakes region of North America. For generations, Manoomin stewardship has been central to Ojibwe culture and identity, harvested using traditional methods which respect and enrich its growth. Recent years have shown a decline in Manoomin’s natural occurrence due to land-use change and global warming. As part of a broader conservation effort, our team has collaborated with Tribal partners to build Makak, a low-cost microclimate sensor that monitors factors affecting wild rice to support Tribal sovereignty. This article details our co-design and pilot deployment in collaboration with four partner organizations. Through this work, we share our experiences, and lessons learned from the co-design process with Tribal partners. With this work, we aim to provide insights to other projects that promote Indigenous-centric participatory, collaborative design methods for conservation and environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026
  2. Current environmental challenges have profound local consequences and often benefit from the collection of fine-grained microclimate data. Advances in wireless sensor networks and the Internet of Things have led to technologies nominally suited to support remote sensing; however, in practice long-running deployments of in-field environmental sensors are rare. Field conditions are often remote and culturally sensitive, with limited power, Internet, transportation, and human infrastructure; advances in device technology alone will not suffice. We ask how communities, Internet of Things researchers, government, and other interested parties can work together to co-design useful, low burden, sustainability-focused infrastructure. Toward this end, we conducted 11 semi-structured interviews with 13 experts who use or rely on environmental sensing technology. To complement our interview data, we engaged in three months of participant observation while immersed in organizations specifically working toward manoomin (wild rice) conservation. We make two primary contributions. First, we confirm and enrich a five-stage model, the microclimate sensor lifecycle, focusing on desired features and persistent challenges. Second, we outline a space for co-design of microclimate sensors with emphasis on the cost of experience, the generally unaddressed issue of technical usability in the messy field, and the opportunity for community engagement to improve technical design and outcomes. Furthermore, we discuss future design opportunities, recommendations, and challenges in the microclimate sensor design, deployment, and sustainability space. 
    more » « less
  3. This article calls for careful, calculated, community-driven co-design of mobile and ubiquitous solutions to bridge the gap in financing and capacity of marginalized communities as they battle for the safety and health of their members. Communities across the globe face incredible challenges to preserve their environment, lifestyle, prosperity, equality, and even democracy. In the past five years, the urgency of multiple global crises, including climate degradation that causes extreme weather and shatters ecosystems and the COVID-19 pandemic that caused a global health crisis and economic upheaval, has threatened an already delicate balance. However, the impacts of these events are uneven - vulnerable, low-income, and marginalized communities have borne the brunt of many of these crises, not having the infrastructure or capacity to address every single gap. 
    more » « less
  4. The COVID-19 pandemic has dramatically increased the use of face masks across the world. Aside from physical distancing, they are among the most effective protection for healthcare workers and the general population. Face masks are passive devices, however, and cannot alert the user in case of improper fit or mask degradation. Additionally, face masks are optimally positioned to give unique insight into some personal health metrics. Recognizing this limitation and opportunity, we present FaceBit: an open-source research platform for smart face mask applications. FaceBit's design was informed by needfinding studies with a cohort of health professionals. Small and easily secured into any face mask, FaceBit is accompanied by a mobile application that provides a user interface and facilitates research. It monitors heart rate without skin contact via ballistocardiography, respiration rate via temperature changes, and mask-fit and wear time from pressure signals, all on-device with an energy-efficient runtime system. FaceBit can harvest energy from breathing, motion, or sunlight to supplement its tiny primary cell battery that alone delivers a battery lifetime of 11 days or more. FaceBit empowers the mobile computing community to jumpstart research in smart face mask sensing and inference, and provides a sustainable, convenient form factor for health management, applicable to COVID-19 frontline workers and beyond. 
    more » « less