skip to main content

Search for: All records

Creators/Authors contains: "Roundy, Joshua K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interaction between climate and the hydrologic cycle is complex due to intricate feedback mechanisms that can have multiple impacts on key hydrologic variables. Under a changing climate, it is becoming increasingly important for undergraduate engineering students to have a better understanding of climate and the hydrologic cycle to ensure future engineering systems are more climate resilient. One way of teaching undergraduate students about these key interactions between climate and the hydrologic cycle is through numerical models that mimic these relationships. However, this is difficult to do in an undergraduate engineering course because these models are complex, and it is not feasible to devote class time and resources to teaching students the knowledge base required to run and analyze these numerical models. In addition, the recent COVID-19 pandemic required a rapid change to flexible teaching methods that can be implemented in online, hybrid, or in-person courses. To overcome these limitations, a backward design and constructive alignment approach was used to develop an active learning module in the HydroLearn framework that allows students to explore the connection between snow processes and streamflow and how this will change under different climate scenarios using numerical models and analysis. This learning module provides learning activities and tools that help the student develop a basic knowledge of snow formation and terminology, snow measurements, numerical models of snow processes, and changes in snow and streamflow under future climate. This module is particularly innovative in that it uses Google Colabs and an interactive user interface to facilitate the students' active learning in an environment that is accessible for all students and is sustainable for continued use and adaptation. This paper describes the approach, best practices and lessons learned in developing and implementing this active learning module in a remote and in-person course. In addition, it presents the results from motivation and student self-assessment surveys and discusses opportunities for improvement and further implementation that have implications for the future of hydrologic education. 
    more » « less