skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roundy, Paul_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Eastward-moving moist deep convection and atmospheric circulation signals associated with the tropical Madden–Julian oscillation (MJO) sometimes break down as they cross the Maritime Continent region, but other times, the signal propagates across the region maintaining amplitude or regaining it over the west Pacific basin. This paper assesses the hypothesis that upper-tropospheric zonal diffluence of the background wind over the Maritime Continent causes much of this Maritime Continent barrier effect and its variation over time, through two mechanisms: 1) by slowing down the MJO as stronger-than-average background upper-tropospheric zonal wind over the Indian Ocean advects the MJO circulation signal westward, slowing its eastward advance, and 2) through the zonal advection of the background wind by subseasonal zonal wind across a region of zonal diffluence of the background wind, which advects the background wind of the opposite sign to the MJO wind. Advection of the opposite-signed background wind counteracts the MJO wind and reduces its associated upper-tropospheric mass divergence, weakening the mechanisms of the upper-tropospheric Kelvin wave component of the MJO circulation. Composites of MJO-associated zonal wind and outgoing longwave radiation signals diminish as they cross the Maritime Continent region when the region’s background zonal winds are diffluent, and composites of data reconstructing the relevant advection terms reveal the direct action of the advection mechanisms. Significance StatementThe Madden–Julian oscillation (MJO) is the leading subseasonal variation of the tropical atmosphere. This project addresses how diffluence of the upper-tropospheric background zonal wind can break down MJO events through advection of and by the background wind. 
    more » « less
  2. Abstract The Madden–Julian oscillation (MJO) propagates eastward as a disturbance of mostly zonal wind and precipitation along the equator. The initial diagnosis of the MJO spectral peak at 40–50-day periods suggests a reduction in amplitude associated with slower MJO events that occur at lower frequencies. If events on the low-frequency side of the spectral peak continued to grow in amplitude with reduced phase speed, the spectrum would just be red. Wavelet regression analysis of slow and fast eastward-propagating MJO signals during northern winter assesses how associated moisture and wind patterns could explain why slow MJO events achieve lower amplitude in tracers of moist convection. Results suggest that slow MJO events favor a ridge anomaly over Europe, which drives cool dry air equatorward over Africa and Arabia as the active convection develops over the Indian Ocean. We hypothesize that dry air tracing back to this source, together with a longer duration of the events, leads to associated convection diminishing along the equator and instead concentrating in the Rossby gyres off the equator. Significance StatementThe Madden–Julian oscillation (MJO) dominates the subseasonal variability of the tropical atmosphere. This work suggests that it favors maximum convective activity in the 40–50-day period range because lower-frequency MJO signals tend to import more cool dry air from the extratropics and along the equator, thereby weakening the slower events. 
    more » « less