skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rowan, Stuart J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 21, 2026
  2. Free, publicly-accessible full text available November 12, 2025
  3. Carboxylic acid functionalized cellulose nanocrystals have been obtained from biomass and evaluated as aqueous, environmentally sustainable alternatives to conventional polyvinylidene difluoride binders for cathodes of lithium-ion batteries. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  4. Stimuli-responsive RAPs with disulfide bonds enablein-situelectrode cleaningviaUV or electrochemical stimuli, effectively removing fouling and restoring electrode performance in electrochemical flow cells. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025
  5. Abstract The integration of mechanically interlocked molecules (MIMs) into polymeric materials has led to the development of mechanically interlocked polymers (MIPs). One class of MIPs that have gained attention in recent years are slide‐ring gels (SRGs), which are generally accessed by crosslinking rings on a main‐chain polyrotaxane. The mobility of the interlocked crosslinking moieties along the polymer backbone imparts enhanced properties onto these networks. An alternative synthetic approach to SRGs is to use a doubly threaded ring as the crosslinking moiety, yielding doubly threaded slide‐ring gel networks (dt‐SRGs). In this study, a photo‐curable ligand‐containing thread was used to assemble a series of metal‐templated pseudo[3]rotaxane crosslinkers that allow access to polymer networks that contain doubly threaded interlocked rings. The physicochemical and mechanical properties of these dt‐SRGs with varying size of the ring crosslinking moieties were investigated and compared to an entangled gel (EG) prepared by polymerizing the metal complex of the photo‐curable ligand‐containing thread, and a corresponding covalent gel (CG). Relative to the EG and CG, the dt‐SRGs exhibit enhanced swelling behavior, viscoelastic properties, and stress relaxation characteristics. In addition, the macroscopic properties of dt‐SRGs could be altered by “locking” ring mobility in the structure through remetalation, highlighting the impact of the mobility of the crosslinks. 
    more » « less
  6. Dynamic covalent bonds in suspensions serve as effective friction, leading to shear-thickening behavior. This behavior is similar to that of physically contacting particles but shows a distinct dependence on particle size. 
    more » « less
  7. The self-brushing capability of block copolymers enables perpendicular thin film assembly on various substrates without the need for additional coatings. 
    more » « less
  8. Cellulose nanocrystal (CNC)-reinforced composites are gaining commercial attention on account of their high strength and sustainable sourcing. Grafting polymers to the CNCs in these composites has the potential to improve their properties, but current solution-based synthesis methods limit their production at scale. Utilizing dynamic hindered urea chemistry, a new method for the melt-functionalization of cellulose nanocrystals has been developed. This method does not require toxic solvents during the grafting step and can achieve grafting densities competitive with state-of-the-art solution-based grafting methods. Using cotton-sourced, TEMPO-oxidized CNCs, multiple molecular weights of poly(ethylene glycol) (PEG) as well as dodecane, polycaprolactone, and poly(butyl acrylate) were grafted to the CNC surface. With PEG-grafted nanoparticles, grafting densities of 0.47 chains nm−2 and 0.10 chains nm−2 were achieved with 2000 and 10,000 g mol−1 polymer chains respectively, both of which represent significant improvements over previous reports for solution-based PEG grafting onto CNCs. 
    more » « less