skip to main content

Search for: All records

Creators/Authors contains: "Rowland, Joel C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Arctic coastal environments are eroding and rapidly changing. A lack of pan-Arctic observations limits our ability to understand controls on coastal erosion rates across the entire Arctic region. Here, we capitalize on an abundance of geospatial and remotely sensed data, in addition to model output, from the North Slope of Alaska to identify relationships between historical erosion rates and landscape characteristics to guide future modeling and observational efforts across the Arctic. Using existing datasets from the Alaska Beaufort Sea coast and a hierarchical clustering algorithm, we developed a set of 16 coastal typologies that captures the defining characteristics of environments susceptible to coastal erosion. Relationships between landscape characteristics and historical erosion rates show that no single variable alone is a good predictor of erosion rates. Variability in erosion rate decreases with increasing coastal elevation, but erosion rate magnitudes are highest for intermediate elevations. Areas along the Alaskan Beaufort Sea coast (ABSC) protected by barrier islands showed a three times lower erosion rate on average, suggesting that barrier islands are critical to maintaining mainland shore position. Finally, typologies with the highest erosion rates are not broadly representative of the ABSC and are generally associated with low elevation, north- to northeast-facing shorelines, a peaty pebbly silty lithology, and glaciomarine deposits with high ice content. All else being equal, warmer permafrost is also associated with higher erosion rates, suggesting that warming permafrost temperatures may contribute to higher future erosion rates on permafrost coasts. The suite of typologies can be used to guide future modeling and observational efforts by quantifying the distribution of coastlines with specific landscape characteristics and erosion rates.

    more » « less
  2. Abstract

    Flooding of low-lying Arctic regions has the potential to warm and thaw permafrost by changing the surface reflectance of solar insolation, increasing subsurface soil moisture, and increasing soil thermal conductivity. However, the impact of flooding on permafrost in the continuous permafrost environment remains poorly understood. To address this knowledge gap, we used a combination of available flooding data on the Ikpikpuk delta and a numerical model to simulate the hydro-thermal processes under coastal floodplain flooding. We first constructed the three most common flood events based on water level data on the Ikpikpuk: snowmelt floods in the late spring and early summer, middle and late summer floods, and floods throughout the whole spring and summer. Then the impact of these flooding events on the permafrost was simulated for one-dimensional permafrost columns using the Advanced Terrestrial Simulator (ATSv1.0), a fully coupled permafrost-hydrology and thermal dynamic model. Our results show that coastal floods have an important impact on coastal permafrost dynamics with a cooling effect on the surficial soil and a warming effect on the deeper soil. Cumulative flooding events over several years can cause continuous warming of the deep subsurface but cool down the surficial layer. Flood timing is a primary control of the vertical extent of the permafrost thaw and the active layer deepening.

    more » « less
  3. Abstract. The abundance of global, remotely sensed surface water observations has accelerated efforts toward characterizing and modeling how water moves across the Earth's surface through complex channel networks. In particular, deltas and braided river channel networks may contain thousands of links that route water, sediment, and nutrients across landscapes. In order to model flows through channel networks and characterize network structure, the direction of flow for each link within the network must be known. In this work, we propose a rapid, automatic, and objective method to identify flow directions for all links of a channel network using only remotely sensed imagery and knowledge of the network's inlet and outletlocations. We designed a suite of direction-predicting algorithms (DPAs),each of which exploits a particular morphologic characteristic of thechannel network to provide a prediction of a link's flow direction. DPAswere chained together to create “recipes”, or algorithms that set all theflow directions of a channel network. Separate recipes were built for deltasand braided rivers and applied to seven delta and two braided river channelnetworks. Across all nine channel networks, the recipe-predicted flowdirections agreed with expert judgement for 97 % of all tested links, andmost disagreements were attributed to unusual channel network topologiesthat can easily be accounted for by pre-seeding critical links with knownflow directions. Our results highlight the (non)universality ofprocess–form relationships across deltas and braided rivers. 
    more » « less
  4. Abstract

    Whether permafrost systematically alters the rate of riverbank erosion is a fundamental geomorphic question with significant importance to infrastructure, water quality, and biogeochemistry of high‐latitude watersheds. For over four decades, this question has remained unanswered due to a lack of data. Using remotely sensed imagery, we addressed this knowledge gap by quantifying riverbank erosion rates across the Arctic and subarctic. To compare these rates to non‐permafrost rivers, we assembled a global data set of published riverbank erosion rates. We found that erosion rates in rivers influenced by permafrost are on average nine times lower than non‐permafrost systems; erosion rate differences increase up to 40 times for the largest rivers. To test alternative hypotheses for the observed erosion rate difference, we examined differences in total water yield and erosional efficiency between these rivers and non‐permafrost rivers. Neither of these factors nor differences in river sediment loads provided compelling alternative explanations, leading us to conclude that permafrost limits riverbank erosion rates. This conclusion was supported by field investigations of rates and patterns of erosion along three rivers flowing through discontinuous permafrost in Alaska. Our results show that permafrost limits maximum bank erosion rates on rivers with stream powers greater than 900 Wm−1. On smaller rivers, however, hydrology rather than thaw rate may be the dominant control on bank erosion. Our findings suggest that Arctic warming and hydrological changes should increase bank erosion rates on large rivers but may reduce rates on rivers with drainage areas less than a few thousand km2.

    more » « less
  5. Abstract

    Understanding how thermokarst lakes on arctic river deltas will respond to rapid warming is critical for projecting how carbon storage and fluxes will change in those vulnerable environments. Yet, this understanding is currently limited partly due to the complexity of disentangling significant interannual variability from the longer‐term surface water signatures on the landscape, using the short summertime window of optical spaceborne observations. Here, we rigorously separate perennial lakes from ephemeral wetlands on 12 arctic deltas and report distinct size distributions and climate trends for the two waterbodies. Namely, we find a lognormal distribution for lakes and a power‐law distribution for wetlands, consistent with a simple proportionate growth model and inundated topography, respectively. Furthermore, while no trend with temperature is found for wetlands, a statistically significant decreasing trend of mean lake size with warmer temperatures is found, attributed to colder deltas having deeper and thicker permafrost preserving larger lakes.

    more » « less