skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Roy Chowdhury, Prabudhya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lattice thermal conductivity is important for many applications, but experimental measurements or first principles calculations including three-phonon and four-phonon scattering are expensive or even unaffordable. Machine learning approaches that can achieve similar accuracy have been a long-standing open question. Despite recent progress, machine learning models using structural information as descriptors fall short of experimental or first principles accuracy. This study presents a machine learning approach that predicts phonon scattering rates and thermal conductivity with experimental and first principles accuracy. The success of our approach is enabled by mitigating computational challenges associated with the high skewness of phonon scattering rates and their complex contributions to the total thermal resistance. Transfer learning between different orders of phonon scattering can further improve the model performance. Our surrogates offer up to two orders of magnitude acceleration compared to first principles calculations and would enable large-scale thermal transport informatics.

     
    more » « less