- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cheng, Jianlin (2)
-
Giri, Nabin (2)
-
Guo, Zhiye (2)
-
Liu, Jian (2)
-
Roy, Raj_S (2)
-
Barradas‐Bautista, Didier (1)
-
Bates, Paul_A (1)
-
Beglov, Dmitri (1)
-
Bojarski, Krzysztof_K (1)
-
Bonvin, Alexandre_M_J_J (1)
-
Brysbaert, Guillaume (1)
-
Canner, Sam (1)
-
Cao, Zhen (1)
-
Cavallo, Luigi (1)
-
Chang, Shan (1)
-
Chawla, Mohit (1)
-
Chen, Chen (1)
-
Chen, Xiao (1)
-
Cheung, Melyssa (1)
-
Christoffer, Charles_W (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Estimating the accuracy of quaternary structural models of protein complexes and assemblies (EMA) is important for predicting quaternary structures and applying them to studying protein function and interaction. The pairwise similarity between structural models is proven useful for estimating the quality of proteintertiarystructural models, but it has been rarely applied to predicting the quality ofquaternarystructural models. Moreover, the pairwise similarity approach often fails when many structural models are of low quality and similar to each other. To address the gap, we developed a hybrid method (MULTICOM_qa) combining a pairwise similarity score (PSS) and an interface contact probability score (ICPS) based on the deep learning inter‐chain contact prediction for estimating protein complex model accuracy. It blindly participated in the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) in 2022 and performed very well in estimating the global structure accuracy of assembly models. The average per‐target correlation coefficient between the model quality scores predicted by MULTICOM_qa and the true quality scores of the models of CASP15 assembly targets is 0.66. The average per‐target ranking loss in using the predicted quality scores to rank the models is 0.14. It was able to select good models for most targets. Moreover, several key factors (i.e., target difficulty, model sampling difficulty, skewness of model quality, and similarity between good/bad models) for EMA are identified and analyzed. The results demonstrate that combining the multi‐model method (PSS) with the complementary single‐model method (ICPS) is a promising approach to EMA.more » « less
-
Lensink, Marc_F; Brysbaert, Guillaume; Raouraoua, Nessim; Bates, Paul_A; Giulini, Marco; Honorato, Rodrigo_V; van_Noort, Charlotte; Teixeira, Joao_M_C; Bonvin, Alexandre_M_J_J; Kong, Ren; et al (, Proteins: Structure, Function, and Bioinformatics)Abstract We present the results for CAPRI Round 54, the 5th joint CASP‐CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo‐trimers, 13 heterodimers including 3 antibody–antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High‐quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2‐Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2‐Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.more » « less
An official website of the United States government
