Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate zones play a significant role in shaping the forest ecosystems located within them by influencing multiple ecological processes, including growth, disturbances, and species interactions. Therefore, delineation of current and future climate zones is essential to establish a framework for understanding and predicting shifts in forest ecosystems. In this study, we developed and applied an efficient approach to delineate regional climate zones in the northeastern United States and maritime Canada, aiming to characterize potential shifts in climate zones and discuss associated changes in forest ecosystems. The approach comprised five steps: climate data dimensionality reduction, sampling scenario design, cluster generation, climate zone delineation, and zone shift prediction. The climate zones in the study area were delineated into four different orders, with increasing subzone resolutions of 3, 9, 15, and 21. Furthermore, projected climate normals under Shared Socioeconomic Pathways 4.5 and 8.5 scenarios were used to predict the shifts in climate zones until 2100. Our findings indicate that climate zones characterized by higher temperatures and lower precipitation are expected to become more prevalent, potentially becoming the dominant climate condition across the entire region. These changes are likely to alter regional forest composition, structure, and productivity. In short, such shifts in climate underscore the significant impact of environmental change on forest ecosystem dynamics and carbon sequestration potential.more » « less
-
The need to train sustainability scientists and engineers to address the complex problems of our world has never been more apparent. We organized an interdisciplinary team of instructors from universities in the states of Maine, New Hampshire, and Rhode Island who designed, taught, and assessed a multi-university course to develop the core competencies necessary for advancing sustainability solutions. Lessons from the course translate across sustainability contexts, but our specific focus was on the issues and trade-offs associated with dams. Dams provide numerous water, energy, and cultural services to society while exacting an ecological toll that disrupts the flow of water, fish, and sediment in rivers. Like many natural resource management challenges, effective dam decisions require collaboration among diverse stakeholders and disciplines. We linked key sustainability principles and practices related to interdisciplinarity, stakeholder engagement, and problem-solving to student learning outcomes that are generalizable beyond our dam-specific context. Students and instructors co-created class activities to build capacity for interdisciplinary collaboration and encourage student leadership and creativity. Assessment results show that students responded positively to activities related to stakeholder engagement and interdisciplinary collaboration, particularly when practicing nested discussion and intrapersonal reflection. These activities helped broaden students’ perspectives on sustainability problems and built greater capacity for constructive communication and student leadership.more » « less
-
Aging infrastructure and growing interests in river restoration have led to a substantial rise in dam removals in the United States. However, the decision to remove a dam involves many complex trade-offs. The benefits of dam removal for hazard reduction and ecological restoration are potentially offset by the loss of hydroelectricity production, water supply, and other important services. We use a multiobjective approach to examine a wide array of trade-offs and synergies involved with strategic dam removal at three spatial scales in New England. We find that increasing the scale of decision-making improves the efficiency of trade-offs among ecosystem services, river safety, and economic costs resulting from dam removal, but this may lead to heterogeneous and less equitable local-scale outcomes. Our model may help facilitate multilateral funding, policy, and stakeholder agreements by analyzing the trade-offs of coordinated dam decisions, including net benefit alternatives to dam removal, at scales that satisfy these agreements.more » « less
An official website of the United States government
