skip to main content

Search for: All records

Creators/Authors contains: "Rozoff, Christopher M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Populated urban areas along many coastal regions are vulnerable to landfalling tropical cyclones (TCs). To the detriment of surface parameterizations in mesoscale models, the complexities of turbulence at high TC wind speeds in urban canopies are presently poorly understood. Thus, this study explores the impacts of urban morphology on TC-strength winds and boundary layer turbulence in landfalling TCs. To better quantify how urban structures interact with TC winds, large-eddy simulations (LESs) are conducted with the Cloud Model 1 (CM1). This implementation of CM1 includes immersed boundary conditions (IBCs) to represent buildings and eddy recycling to maintain realistic turbulent flow perturbations. Within the IBCs, an idealized coastal city with varying scales is introduced. TC winds impinge perpendicularly to the urbanized coastline. Numerical experiments show that buildings generate distinct, intricate flow patterns that vary significantly as the city structure is varied. Urban IBCs produce much stronger turbulent kinetic energy than is produced by conventional surface parameterizations. Strong effective eddy viscosity due to resolved eddy mixing is displayed in the wake of buildings within the urban canopy, while deep and enhanced effective eddy viscosity is present downstream. Such effects are not seen in a comparison LES using a simple surface parameterization with high roughness values. Wind tunneling effects in streamwise canyons enhance pedestrian-level winds well beyond what is possible without buildings. In the arena of regional mesoscale modeling, this type of LES framework with IBCs can be used to improve parameters in surface and boundary layer schemes to more accurately represent the drag coefficient and the eddy viscosity in landfalling TC boundary layers.

    Significance Statement

    This is among the first large-eddy simulation model studies to examine the impacts of tropical cyclone–like winds around explicitly resolved buildings. This work is a step forward in bridging the gap between engineering studies that use computational fluid dynamics models or laboratory experiments for flow through cities and mesoscale model simulations of landfalling tropical cyclones that use surface parameterizations specialized for urban land use.

    more » « less
  2. Empirical-statistical downscaling (ESD) can be a computationally advantageous alternative to dynamical downscaling in representing a high-resolution regional climate. Two distinct strategies of ESD are employed here to reconstruct near-surface winds in a region of rugged terrain. ESD is used to reconstruct the innermost grid of a multiply nested mesoscale model framework for regional climate downscaling. An analog ensemble (AnEn) and a convolutional neural network (CNN) are compared in their ability to represent near-surface winds in the innermost grid in lieu of dynamical downscaling. Downscaling for a 30 year climatology of 10 m April winds is performed for southern MO, USA. Five years of training suffices for producing low mean absolute error and bias for both ESD techniques. However, root-mean-squared error is not significantly reduced by either scheme. In the case of the AnEn, this is due to a minority of cases not producing a satisfactory representation of high-resolution wind, accentuating the root-mean-squared error in spite of a small mean absolute error. Homogeneous comparison shows that the AnEn produces smaller errors than the CNN. Though further tuning may improve results, the ESD techniques considered here show that they can produce a reliable, computationally inexpensive method for reconstructing high-resolution 10 m winds over complex terrain. 
    more » « less