skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rubenstein, Aliza B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biophysical interactions between proteins and peptides are key determinants of molecular recognition specificity landscapes. However, an understanding of how molecular structure and residue-level energetics at protein−peptide interfaces shape these landscapes remains elusive. We combine information from yeast-based library screening, next-generation sequencing, and structure-based modeling in a supervised machine learning approach to report the comprehensive sequence−energetics−function mapping of the specificity landscape of the hepatitis C virus (HCV) NS3/4A protease, whose function—site-specific cleavages of the viral polyprotein—is a key determinant of viral fitness. We screened a library of substrates in which five residue positions were randomized and measured cleavability of ∼30,000 substrates (∼1% of the library) using yeast display and fluorescence-activated cell sorting followed by deep sequencing. Structure-based models of a subset of experimentally derived sequences were used in a supervised learning procedure to train a support vector machine to predict the cleavability of 3.2 million substrate variants by the HCV protease. The resulting landscape allows identification of previously unidentified HCV protease substrates, and graph-theoretic analyses reveal extensive clustering of cleavable and uncleavable motifs in sequence space. Specificity landscapes of known drug-resistant variants are similarly clustered. The described approach should enable the elucidation and redesign of specificity landscapes of a wide variety of proteases, including human-origin enzymes. Our results also suggest a possible role for residue-level energetics in shaping plateau-like functional landscapes predicted from viral quasispecies theory. 
    more » « less
  2. Abstract Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1–3. Here, the Molecular Transducers of Physical Activity Consortium4profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and femaleRattus norvegicusover eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository (https://motrpac-data.org/). 
    more » « less