- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Acharya, S (2)
-
Adamová, D (2)
-
Adler, A (2)
-
Aglieri_Rinella, G (2)
-
Agnello, M (2)
-
Agrawal, N (2)
-
Ahammed, Z (2)
-
Ahmad, S (2)
-
Ahn, SU (2)
-
Ahuja, I (2)
-
Akindinov, A (2)
-
Al-Turany, M (2)
-
Aleksandrov, D (2)
-
Alessandro, B (2)
-
Alfanda, HM (2)
-
Alfaro_Molina, R (2)
-
Ali, B (2)
-
Alici, A (2)
-
Alizadehvandchali, N (2)
-
Alkin, A (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The knowledge of the material budget with a high precision is fundamental for measurements of direct photonproduction using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed.One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of theoverall material budget systematic uncertainty from 4.5% down to2.5%. Using these methods, a locally correct material budget is alsoachieved. The two proposed methods are generic and can be applied toany experiment in a similar fashion.more » « less
-
Acharya, S; Adamová, D; Adler, A; Aglieri_Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, SU; Ahuja, I; et al (, Journal of Instrumentation)Abstract The performance of the electromagnetic calorimeter of the ALICE experiment during operation in 2010–2018 at the Large Hadron Collider is presented. After a short introduction into the design, readout, and trigger capabilities of the detector, the procedures for data taking, reconstruction, and validation are explained. The methods used for the calibration and various derived corrections are presented in detail. Subsequently, the capabilities of the calorimeter to reconstruct and measure photons, light mesons, electrons and jets are discussed. The performance of the calorimeter is illustrated mainly with data obtained with test beams at the Proton Synchrotron and Super Proton Synchrotron or in proton-proton collisions at √s= 13 TeV, and compared to simulations.more » « less
An official website of the United States government
