skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruess, Roger"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Snow is an important insulator of Arctic soils during winter and may be a source of soil moisture in summer. Changes in snow depth are likely to affect fine root growth and mortality via changes in soil temperature, moisture, and/or nutrient availability, which could alter aboveground growth and reproduction of Arctic vegetation.We explored fine root dynamics at three contrasting treelines in northwest Alaska. We used snowfences to increase snow depth relative to control and minirhizotrons to estimate fine root growth, standing crop, and overwinter loss.Experimental deepening of snowpacks led to warmer winter soils but did not affect growing season soil moisture. Deeper snow reduced fine root standing crop with no significant effects on overwinter fine root loss. Warmer soils in late winter were associated with warmer soils in early and mid‐summer. Warmer early summer soils may have promoted early root growth. However, warmer July soils were associated with reduced fine root growth and smaller standing crops.We hypothesize that deeper snow improves plant access to soil nutrients, resulting in reduced investment in fine roots, potentially leaving additional resources to support aboveground growth and reproduction. Our results suggest one mechanism by which deeper snow could promote northern treeline advance. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Neodothiora populina Crous, G.C. Adams & Winton was determined to be a new pathogen of trembling aspen (Populus tremuloides) growing in Alaska, based on completion of Koch’s Postulates in replicated forest and growth chamber inoculation trials. The pathogen is responsible for severe damage and widespread rapid mortality of sapling to mature aspen (≥ 80 years) in the boreal forests of interior Alaska, due to large diffuse annual (1–2 years) cankers. Isolation of the pathogen was challenging, and identification based on cultural characters was difficult. Fruiting bodies were not found on wild diseased trees, but erumpent pycnidia were found in bark overlying cankers on several stems inoculated with pure cultures. 
    more » « less
  3. Koch, Frank H. (Ed.)
    Over the past several decades, growth declines and mortality of trembling aspen throughout western Canada and the United States have been linked to drought, often interacting with outbreaks of insects and fungal pathogens, resulting in a “sudden aspen decline” throughout much of aspen’s range. In 2015, we noticed an aggressive fungal canker causing widespread mortality of aspen throughout interior Alaska and initiated a study to quantify potential drivers for the incidence, virulence, and distribution of the disease. Stand-level infection rates among 88 study sites distributed across 6 Alaska ecoregions ranged from <1 to 69%, with the proportion of trees with canker that were dead averaging 70% across all sites. The disease is most prevalent north of the Alaska Range within the Tanana Kuskokwim ecoregion. Modeling canker probability as a function of ecoregion, stand structure, landscape position, and climate revealed that smaller-diameter trees in older stands with greater aspen basal area have the highest canker incidence and mortality, while younger trees in younger stands appear virtually immune to the disease. Sites with higher summer vapor pressure deficits had significantly higher levels of canker infection and mortality. We believe the combined effects of this novel fungal canker pathogen, drought, and the persistent aspen leaf miner outbreak are triggering feedbacks between carbon starvation and hydraulic failure that are ultimately driving widespread mortality. Warmer early-season temperatures and prolonged late summer drought are leading to larger and more severe wildfires throughout interior Alaska that are favoring a shift from black spruce to forests dominated by Alaska paper birch and aspen. Widespread aspen mortality fostered by this rapidly spreading pathogen has significant implications for successional dynamics, ecosystem function, and feedbacks to disturbance regimes, particularly on sites too dry for Alaska paper birch. 
    more » « less
  4. Abstract Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems. 
    more » « less
  5. The future of boreal forests in Alaska, United States, will likely consist of more deciduous-dominant stands because larger and more severe fires facilitate the establishment of deciduous species such as trembling aspen (Populus tremuloides Michx.) and Alaska birch (Betula neoalaskana Sarg.). Whether stands transition to a deciduous-dominant system or mixed-wood forest or return to being dominated by black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) depends on the capacity of regenerating black spruce to grow and produce seed before the next fire. We hypothesized that winter herbivory by snowshoe hares (Lepus americanus Erxleben, 1777) can suppress black spruce under deciduous canopies. We addressed this question by measuring changes in spruce height and herbivory across 54 plots in Interior Alaska that burned 8–88 years ago and related these data to plot-level data collected by the Bonanza Creek Long-Term Ecological Research program. Spruce were more likely browsed at deciduous-dominant sites with dense canopies, and this browsing likely reduced their height growth. Although we found more subtle effects of browsing on height at the individual level, browsing was an important variable in a confirmatory path analysis at the plot level. These observations affirm our broader hypothesis of the selectivity of hare browsing, in that snowshoe hares prefer to browse spruce that are taller and faster growing, effectively “leveling” regenerating seedlings and saplings so that browsed and unbrowsed individuals within a site are the same height. 
    more » « less
  6. Because of its high phosphorus (P) demands, it is likely that the abundance, distribution, and N-fixing capacity of Alnus in boreal forests are tightly coupled with P availability and the mobilization and uptake of soil P via ectomycorrhizal fungi (EMF). We examined whether Alnus shifts EMF communities in coordination with increasingly more complex organic P forms across a 200-year-old successional sequence along the Tanana River in interior Alaska. Root-tip activities of acid phosphatase, phosphodiesterase, and phytase of A. tenuifolia-associated EMF were positively intercorrelated but did not change in a predictable manner across the shrub, to hardwood to coniferous forest successional sequence. Approximately half of all Alnus roots were colonized by Alnicola and Tomentella taxa, and ordination analysis indicated that the EMF community on Alnus is a relatively distinct, host-specific group. Despite differences in the activities of the two Alnus dominants to mobilize acid phosphatase and phosphodiesterase, the root-tip activities of P-mobilizing enzymes of the Alnus-EMF community were not dramatically different from other co-occurring boreal plant hosts. This suggests that if Alnus has a greater influence on P cycling than other plant functional types, additional factors influencing P mobilization and uptake at the root and/or whole-plant level must be involved. 
    more » « less
  7. Abstract As tall shrubs increase in extent and abundance in response to a changing climate, they have the potential to substantially alter Arctic and boreal ecosystem nutrient cycling and carbon (C) balance. Siberian alder (Alnus viridisssp.fruticosa), a nitrogen (N) fixing shrub, is among the species responding to climate warming in both the Arctic and boreal forests. By relieving N limitation of microbial activity, alder‐fixed N has the potential to increase decomposition of labile soil C. Simultaneously, it may also decrease decomposition of recalcitrant soil C by downregulating microbial N mining. The microbial response to N additions is influenced by differences in the soil organic matter (SOM) chemistry and could ultimately determine whether alder N additions result in a net sink or source of C to the atmosphere. We measured the activities of three extracellular enzymes in bulk organic soils under and away from alder canopies in stands differing in SOM chemistry in both the arctic and boreal forest regions of Alaska, USA. In the Arctic, samples taken from under alder had higher activities of both recalcitrant and labile C‐degrading enzymes than samples taken away, regardless of SOM chemistry. In the boreal forest, enzyme activities did not differ with alder proximity nor stand SOM chemistry, possibly due to long legacies of alder N inputs in these stands. As arctic and boreal forest ecosystems experience shifts in the distribution and abundance of this N‐fixing shrub, alders' influence on soil decomposition could have significant consequences for high latitude soil C budgets. 
    more » « less