The production ofandmesons in lead-lead (Pb-Pb) and proton-proton () collisions is studied in their dimuon decay channel using the CMS detector at the LHC. Themeson is observed for the first time in Pb-Pb collisions, with a significance above 5 standard deviations. The ratios of yields measured in Pb-Pb andcollisions are reported for both theandmesons, as functions of transverse momentum and Pb-Pb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression ofyields in Pb-Pb collisions. This suppression increases from peripheral to central Pb-Pb collisions. Furthermore, the suppression is stronger formesons compared tomesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the,,, andmesons.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions atin events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity ofcollected in 2016–2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (), back-to-back in azimuth, and with a large diphoton invariant mass () are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parametersand, using an effective field theory. Additionally, upper limits are placed on the production of axionlike particles with coupling strength to photonsthat varies fromtoover the mass range from 500 to 2000 GeV.
© 2024 CERN, for the CMS and TOTEMs Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
Abstract The Large Hadron Collider at CERN will undergo an upgrade in order to increase its luminosity to 7.5 × 1034cm-2s-1. The increased luminosity during this High-Luminosity running phase, starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50 μm × 50 μm and rectangular 100 μm × 25 μm pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS during the High-Luminosity running phase. A spatial resolution of approximately 3.4 μm (2 μm) is obtained using the modules with 50 μm × 50 μm (100 μm × 25 μm) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq = 5.3 × 1015 cm-2, a resolution of 9.4 μm is achieved at a bias voltage of 800 V using a module with 50 μm × 50 μm pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1 × 1016 cm-2. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper.
-
A bstract A search for the central exclusive production of top quark-antiquark pairs (
) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb$$ \textrm{t}\overline{\textrm{t}} $$ − 1. The decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.$$ \textrm{t}\overline{\textrm{t}} $$ Free, publicly-accessible full text available June 1, 2025 -
Free, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Abstract The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×10 34 cm -2 s -1 . This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb -1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment.more » « less