skip to main content


Search for: All records

Creators/Authors contains: "Rumshisky, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent explosion in question answering research produced a wealth of both factoid reading comprehension (RC) and commonsense reasoning datasets. Combining them presents a different kind of task: deciding not simply whether information is present in the text, but also whether a confident guess could be made for the missing information. We present QuAIL, the first RC dataset to combine text-based, world knowledge and unanswerable questions, and to provide question type annotation that would enable diagnostics of the reasoning strategies by a given QA system. QuAIL contains 15K multi-choice questions for 800 texts in 4 domains. Crucially, it offers both general and text-specific questions, unlikely to be found in pretraining data. We show that QuAIL poses substantial challenges to the current state-of-the-art systems, with a 30% drop in accuracy compared to the most similar existing dataset. 
    more » « less