skip to main content


Search for: All records

Creators/Authors contains: "Ruohotie, Julia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The radial evolution of interplanetary coronal mass ejections (ICMEs) is dependent on their interaction with the ambient medium, which causes ICME erosion and affects their geoefficiency. Here, an ICME front boundary, which separates the confined ejecta from the mixed, interacted sheath–ejecta plasma upstream, is analyzed in a multipoint study examining the ICME at 1 au on 2020 April 20. A bifurcated current sheet, highly filamented currents, and a two-sided jet were observed at the boundary. The two-sided jet, which was recorded for the first time for a magnetic shear angle <40°, implies multiple (patchy) reconnection sites associated with the ICME erosion. The reconnection exhaust exhibited fine structure, including multistep magnetic field rotation and localized structures that were measured only by separate Cluster spacecraft with the mission inter-spacecraft separation of 0.4–1.6RE. The mixed plasma upstream of the boundary with a precursor at 0.8 au lacked coherency at 1 au and exhibited substantial variations of southward magnetic fields over radial (transverse) distances of 41–237RE(114RE). This incoherence demonstrates the need for continuous (sub)second-resolution plasma and field measurements at multiple locations in the solar wind to adequately address the spatiotemporal structure of ICMEs and to produce accurate space weather predictions.

     
    more » « less