skip to main content

Search for: All records

Creators/Authors contains: "Rupen, M. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report the detection of 15 GHz radio continuum emission associated with the classical Cepheid variable starδCephei (δCep) based on observations with the Karl G. Jansky Very Large Array. Our results constitute the first probable detection of radio continuum emission from a classical Cepheid. We observed the star at pulsation phaseϕ≈ 0.43 (corresponding to the phase of maximum radius and minimum temperature) during three pulsation cycles in late 2018 and detected statistically significant emission (>5σ) during one of the three epochs. The observed radio emission appears to be variable at a ≳10% level on timescales of days to weeks. We also present an upper limit on the 10 GHz flux density at pulsation phaseϕ= 0.31 from an observation in 2014. We discuss possible mechanisms that may produce the observed 15 GHz emission, but cannot make a conclusive identification from the present data. The emission does not appear to be consistent with originating from a close-in, late-type dwarf companion, although this scenario cannot yet be strictly excluded. Previous X-ray observations have shown thatδCep undergoes periodic increases in X-ray flux during pulsation phaseϕ≈ 0.43. The lack of radio detection in two out of three observing epochs atϕ≈ 0.43 suggests that either the radio emission is not linked with a particular pulsation phase, or else that the strength of the generated radio emission in each pulsation cycle is variable.

    more » « less

    Classical novae are shock-powered multiwavelength transients triggered by a thermonuclear runaway on an accreting white dwarf. V1674 Her is the fastest nova ever recorded (time to declined by two magnitudes is t2 = 1.1 d) that challenges our understanding of shock formation in novae. We investigate the physical mechanisms behind nova emission from GeV γ-rays to cm-band radio using coordinated Fermi-LAT, NuSTAR, Swift, and VLA observations supported by optical photometry. Fermi-LAT detected short-lived (18 h) 0.1–100 GeV emission from V1674 Her that appeared 6 h after the eruption began; this was at a level of (1.6 ± 0.4) × 10−6 photons cm−2 s−1. Eleven days later, simultaneous NuSTAR and Swift X-ray observations revealed optically thin thermal plasma shock-heated to kTshock = 4 keV. The lack of a detectable 6.7 keV Fe Kα emission suggests super-solar CNO abundances. The radio emission from V1674 Her was consistent with thermal emission at early times and synchrotron at late times. The radio spectrum steeply rising with frequency may be a result of either free-free absorption of synchrotron and thermal emission by unshocked outer regions of the nova shell or the Razin–Tsytovich effect attenuating synchrotron emission in dense plasma. The development of the shock inside the ejecta is unaffected by the extraordinarily rapid evolution and the intermediate polar host of this nova.

    more » « less