skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rupp, David E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Extreme wind‐driven autumn wildfires are hazardous to life and property, due to their rapid rate of spread. Recent catastrophic autumn wildfires in the western United States co‐occurred with record‐ or near‐record autumn fire weather indices that are a byproduct of extreme fuel dryness and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution analysis to investigate the anthropogenic influence on extreme autumn fire weather in 2017 and 2018. We show that while present‐day anthropogenic climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased the likelihood of extreme fire weather indices by 40% in areas where recent autumn wind‐driven fires have occurred in northern California and Oregon. The increase was primarily through increased autumn fuel aridity and warmer temperatures during dry wind events. These findings illustrate that anthropogenic climate change is exacerbating autumn fire weather extremes that contribute to high‐impact catastrophic fires in populated regions of the western US.

     
    more » « less
  3. Abstract

    Projections of change in high‐flow extremes with global warming vary widely among, and within, large midlatitude river basins. The spatial variability of these changes is attributable to multiple causes. One possible and little‐studied cause of changes in high‐flow extremes is a change in the synchrony of mainstem and tributary streamflow during high‐flow extremes at the mainstem‐tributary confluence. We examined reconstructed and simulated naturalized daily streamflow at confluences on the Columbia River in western North America, quantifying changes in synchrony in future streamflow projections and estimating the impact of these changes on high‐flow extremes. In the Columbia River basin, projected flow regimes across colder tributaries initially diverge with warming as they respond to climate change at different rates, leading to a general decrease in synchrony, and lower high‐flow extremes, relative to a scenario with no changes in synchrony. Where future warming is sufficiently large to cause most subbasins upstream from a confluence to transition toward a rain‐dominated, warm regime, the decreasing trend in synchrony reverses itself. At one confluence with a major tributary (the Willamette River), where the mainstem and tributary flow regimes are initially very different, warming increases synchrony and, therefore, high‐flow magnitudes. These results may be generalizable to the class of large rivers with large contributions to flood risk from the snow (i.e., cold) regime, but that also receive considerable discharge from tributaries that drain warmer basins.

     
    more » « less
  4. Abstract

    The United States (U.S.) West Coast power system is strongly influenced by variability and extremes in air temperatures (which drive electricity demand) and streamflows (which control hydropower availability). As hydroclimate changes across the West Coast, a combination of forces may work in tandem to make its bulk power system more vulnerable to physical reliability issues and market price shocks. In particular, a warmer climate is expected to increase summer cooling (electricity) demands and shift the average timing of peak streamflow (hydropower production) away from summer to the spring and winter, depriving power systems of hydropower when it is needed the most. Here, we investigate how climate change could alter interregional electricity market dynamics on the West Coast, including the potential for hydroclimatic changes in one region (e.g., Pacific Northwest (PNW)) to “spill over” and cause price and reliability risks in another (e.g., California). We find that the most salient hydroclimatic risks for the PNW power system are changes in streamflow, while risks for the California system are driven primarily by changes in summer air temperatures, especially extreme heat events that increase peak system demand. Altered timing and amounts of hydropower production in the PNW do alter summer power deliveries into California but show relatively modest potential to impact prices and reliability there. Instead, our results suggest future extreme heat in California could exert a stronger influence on prices and reliability in the PNW, especially if California continues to rely on its northern neighbor for imported power to meet higher summer demands.

     
    more » « less
  5. Abstract

    Several very large high‐impact fires burned nearly 4,000 km2of mesic forests in western Oregon during September 7–9, 2020. While infrequent, very large high‐severity fires have occurred historically in western Oregon, the extreme nature of this event warrants analyses of climate and meteorological drivers. A strong blocking pattern led to an intrusion of dry air and strong downslope east winds in the Oregon Cascades following a warm‐dry 60‐day period that promoted widespread fuel flammability. Viewed independently, both the downslope east winds and fuel dryness were extreme, but not unprecedented. However, the concurrence of these drivers resulted in compound extremes and impacts unmatched in the observational record. We additionally find that most large wildfires in western Oregon since 1900 have similarly coincided with warm‐dry summers during at least moderate east wind events. These results reinforce the importance of incorporating a multivariate lens for compound extremes in assessing wildfire hazard risk.

     
    more » « less
  6. Abstract

    Cold‐air pooling and associated air temperature inversions are important features of mountain landscapes, but incomplete understanding of their controlling factors hinders prediction of how they may mediate potential future climate changes at local scales. We evaluated how topographic and forest canopy effects on insolation and local winds altered the expression of synoptic‐scale meteorological forcing on near‐surface air temperature inversions and how these effects varied by time of day, season, and spatial scale. Using ~13 years of hourly temperature measurements in forest canopy openings and under the forest canopy at the H.J. Andrews Experimental Forest in the western Cascade Range of Oregon (USA), we calculated air temperature gradients at the basin scale (high vs. low elevation) and at the cross‐valley scale for two transects that differed in topography and forest canopy cover. ERA5 and NCEP NCAR R1 reanalysis data were used to evaluate regional‐scale conditions. Basin and cross‐valley temperature inversions were frequent, particularly in winter and often persisted for several days. Nighttime inversions were more frequent at the cross‐valley scale but displayed the same intra‐annual pattern at the basin and regional scales, becoming most frequent in summer. Nighttime temperature gradients at basin and cross‐valley scales responded similarly to regional‐scale controls, particularly free‐air temperature gradients, despite differences in topography and forest cover. In contrast, the intra‐annual pattern of daytime inversions differed between the basin and cross‐valley scales and between the two cross‐valley transects, implying that topographic and canopy effects on insolation and local winds were key controls at these scales.

     
    more » « less
  7. Abstract

    Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one emissions scenario (RCP 8.5). We developed metrics of vulnerability to short‐term extreme and prolonged drought based on annual allocation to stem growth and net primary productivity. We calculated fire vulnerability based on changes in simulated future area burned relative to historical area burned. Simulated historical drought vulnerability was medium to high in areas with observations of recent drought‐related mortality. Comparisons of observed and simulated historical area burned indicate simulated future fire vulnerability could be underestimated by 3% in the Sierra Nevada and overestimated by 3% in the Rocky Mountains. Projections show that water‐limited forests in the Rocky Mountains, Southwest, and Great Basin regions will be the most vulnerable to future drought‐related mortality, and vulnerability to future fire will be highest in the Sierra Nevada and portions of the Rocky Mountains. High carbon‐density forests in the Pacific coast and western Cascades regions are projected to be the least vulnerable to either drought or fire. Importantly, differences in climate projections lead to only 1% of the domain with conflicting low and high vulnerability to fire and no area with conflicting drought vulnerability. Our drought vulnerability metrics could be incorporated as probabilistic mortality rates in earth system models, enabling more robust estimates of the feedbacks between the land and atmosphere over the 21st century.

     
    more » « less