skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruschel, Lucas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The compositional dependence and influence of relaxation state on the deformation behavior of a Pt–Pd-based bulk metallic glasses model system was investigated, where platinum is systematically replaced by topologically equivalent palladium atoms. The hardness and modulus increased with rising Pd content as well as by annealing below the glass transition temperature. Decreasing strain-rate sensitivity and increasing serration length are observed in nano indentation with increase in Pd content as well as thermal relaxation. Micro-pillar compression for alloys with different Pt/Pd ratios validated the greater tendency for shear localization and brittle behavior of the Pd-rich alloys. Based on total scattering experiments with synchrotron X-ray radiation, a correlation between the increase in stiffer 3-atom cluster connections and reduction in strain-rate sensitivity, as a measure of ductility, with Pd content and thermal history is suggested. 
    more » « less