skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rushforth, Richard R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aridification in the U.S. Southwest has led to tension about conservation and land management strategy. Strain on multi-generational agricultural livelihoods and nearly 150-year-old Colorado River water adjudication necessitates solutions from transdisciplinary partnerships. In this study, farmers and ranchers in a small San Juan River headwater community of southwestern Colorado engaged in a participatory, convergent research study prioritizing local objectives and policy. Acknowledging the historic and sometimes perceived role of academic institutions as representing urban interests, our goal was to highlight how research can support rural governance. This process involved creating community partnerships, analyzing data, and supporting results distribution to the surveyed population through social media. The survey was designed to support a local waterway management plan. Survey results showed lack of water availability and climate changes were selected by producers as most negatively affecting their operations, and many were extremely interested in agroforestry methods and drought-resistant crop species. Statistical analysis identified that satisfaction with community resources was positively correlated with scale of production, satisfaction with irrigation equipment, and familiarity with water rights. We hope to contribute our framework of a convergent, place-based research design for wider applications in other regions to uncover solutions to resource challenges. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. null (Ed.)
  4. null (Ed.)
    Local business leaders, policy makers, elected officials, city planners, emergency managers, and private citizens are responsible for, and deeply affected by, the performance of critical supply chains and related infrastructures. At the center of critical supply chains is the food-energy-water nexus (FEW); a nexus that is key to a community’s wellbeing, resilience, and sustainability. In the 21st century, managing a local FEW nexus requires accurate data describing the function and structure of a community’s supply chains. However, data is not enough; we need data-informed conversation and technical and social capacity building among local stakeholders to utilize the data effectively. There are some resources available at the mesoscale and for food, energy, or water, but many communities lack the data and tools needed to understand connections and bridge the gaps between these scales and systems. As a result, we currently lack the capacity to manage these systems in small and medium sized communities where the vast majority of people, decisions, and problems reside. This study develops and validates a participatory citizen science process for FEW nexus capacity building and data-driven problem solving in small communities at the grassroots level. The FEWSION for Community Resilience (F4R) process applies a Public Participation in Scientific Research (PPSR) framework to map supply chain data for a community’s FEW nexus, to identify the social network that manages the nexus, and then to generate a data-informed conversation among stakeholders. F4R was piloted and co-developed with participants over a 2-year study, using a design-based research process to make evidence-based adjustments as needed. Results show that the F4R model was successful at improving volunteers’ awareness about nexus and supply chain issues, at creating a network of connections and communication with stakeholders across state, regional, and local organizations, and in facilitating data-informed discussion about improvements to the system. In this paper we describe the design and implementation of F4R and discuss four recommendations for the successful application of the F4R model in other communities: 1) embed opportunities for co-created PPSR, 2) build social capital, 3) integrate active learning strategies with user-friendly digital tools, and 4) adopt existing materials and structure. 
    more » « less
  5. null (Ed.)
  6. Abstract The Colorado River Basin is a hydrologic river network that directs runoff from rain and snow falling on mountains, primarily in Colorado and Wyoming, to the Colorado River Delta in Mexico. Over the last century, in response to basin‐wide water shortages, legal agreements between stakeholders in seven U.S. states and Mexico, hydrologic flows from users on the main stem of the river have been reallocated to junior water rights holders. Municipalities, businesses, farmers, and households utilize the Colorado River water to produce and trade valuable, water‐derived goods and services, which effectively reallocates water through a continually adapting, boundary‐free economic river network providing indirect access to virtual Colorado River water. We conceptualize the Colorado River Basin as a multiplex network comprised of interdependent natural flow networks, direct (infrastructural) flow networks, and indirect (virtual) flow networks. Using this reframing, we quantify the total hydrosocial impact of the Drought Contingency Plan (DCP) on Lower Basin states. For each Mm3of water reduced through the DCP, Arizona, Nevada, and California lose an additional 0.42–0.43 Mm3, 0.33–0.51 Mm3, and 1.06–1.10 Mm3of virtual water flow, respectively. Hence, the DCP will require Arizona, Nevada, and Southern California to restructure how they use water, relying less on direct and indirect consumption of the Colorado River water and finding more indirect water sources outside that basin. 
    more » « less
  7. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the U.S. Energy Information Administration (EIA), the U.S. Department of Transportation (USDOT), the U.S. Department of Energy (USDOE), and the U.S. Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the U.S. water footprint (F) and in the observed pattern of virtual water flows. The median water footprint (FCUMed) of the U.S. is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the U.S. is 589 m3 capita−1 (F'Withdrawal: 1298 m3 capita−1; F'CUMax: 720 m3 capita−1; F'CUMin: 198 m3 capita−1). The U.S. hydro-economic network is centered on cities and is dominated by the local and regional scales. Approximately (58 %) of U.S. water consumption is for the direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total U.S. water footprint, and is dominated by irrigated agriculture in the Western U.S. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 % to over 99 % depending on location. Harmonized region-specific, economic sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere. 
    more » « less
  8. Schwartz, Russell (Ed.)
  9. Abstract In the United States, greater attention has been given to developing water supplies and quantifying available waters than determining who uses water, how much they withdraw and consume, and how and where water use occurs. As water supplies are stressed due to an increasingly variable climate, changing land‐use, and growing water needs, greater consideration of the demand side of the water balance equation is essential. Data about the spatial and temporal aspects of water use for different purposes are now critical to long‐term water supply planning and resource management. We detail the current state of water‐use data, the major stakeholders involved in their collection and applications, and the challenges in obtaining high‐quality nationally consistent data applicable to a range of scales and purposes. Opportunities to improve access, use, and sharing of water‐use data are outlined. We cast a vision for a world‐class national water‐use data product that is accessible, timely, and spatially detailed. Our vision will leverage the strengths of existing local, state, and federal agencies to facilitate rapid and informed decision‐making, modeling, and science for water resources. To inform future decision‐making regarding water supplies and uses, we must coordinate efforts to substantially improve our capacity to collect, model, and disseminate water‐use data. 
    more » « less