skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Russell, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wilkins, Laetitia G. (Ed.)
    Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  2. Urbanization affects vegetation within city administrative boundary and nearby rural areas. Gross primary production (GPP) of vegetation in global urban areas is one of important metrics for assessing the impacts of urbanization on terrestrial ecosystems. To date, very limited data and information on the spatial-temporal dynamics of GPP in the global urban areas are available. In this study, we reported the spatial distribution and temporal dynamics of annual GPP during 2000–2016 from 8,182 gridcells (0.5° by 0.5° latitude and longitude) that have various proportion of urban areas. Approximately 79.3% of these urban gridcells had increasing trends of annual GPP during 2000-2016. As urban area proportion (%) within individual urban gridcells increased, the means of annual GPP trends also increased. Our results suggested that for those urban gridcells, the negative effect of urban expansion (often measured by impervious surfaces) on GPP was to large degree compensated by increased vegetation within the gridcells, mostly driven by urban management and local climate and environment. Our findings on the continued increases of annual GPP in most of urban gridcells shed new insight on the importance of urban areas on terrestrial carbon cycle and the potential of urban management and local climate and environment on improving vegetation in urban areas. 
    more » « less
  3. Symbiont specificity, both at the phylotype and strain level, can have profound consequences for host ecology and evolution. However, except for insights from a few model symbiosis systems, the degree of partner fidelity and the influence of host versus environmental factors on symbiont composition are still poorly understood. Nutritional symbioses between invertebrate animals and chemosynthetic bacteria at deep-sea hydrothermal vents are examples of relatively selective associations, where hosts affiliate only with particular, environmentally acquired phylotypes of gammaproteobacterial or campylobacterial symbionts. In hydrothermal vent snails of the sister genera Alviniconcha and Ifremeria , this phylotype specificity has been shown to play a role in habitat distribution and partitioning among different holobiont species. However, it is currently unknown if fidelity goes beyond species-level associations and influences genetic structuring, connectivity, and habitat adaptation of holobiont populations. We used metagenomic analyses to assess sequence variation in hosts and symbionts and identify correlations with geographic and environmental factors. Our analyses indicate that host populations are not differentiated across an ∼800-km gradient, while symbiont populations are clearly structured between vent locations due to a combination of neutral and selective processes. Overall, these results suggest that host individuals flexibly associate with locally adapted strains of their specific symbiont phylotypes, which supports a long-standing but untested paradigm of the benefits of horizontal transmission. Symbiont strain flexibility in these snails likely enables host populations to exploit a range of habitat conditions, which might favor widespread genetic connectivity and ecological resilience unless physical dispersal barriers are present. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024