The estimation of exceedance probabilities for extreme climatic events is critical for infrastructure design and risk assessment. Climatic events occur over a greater space than they are measured with point‐scale in situ gauges. In extreme value theory, the block maxima approach for spatial analysis of extremes depends on properly modeling the spatially varying Generalized Extreme Value marginal parameters (i.e., trend surfaces). Fitting these trend surfaces can be challenging since there are numerous spatial and temporal covariates that are potentially relevant for any given event type and region. Traditionally, covariate selection is based on assumptions regarding the topmost relevant drivers of the event. This work demonstrates the benefit of utilizing elastic‐net regression to support automatic selection from a relatively large set of physically relevant covariates during trend surface estimation. The trend surfaces presented are based on 24‐hr annual maximum precipitation for northeastern Colorado and the Texas‐Louisiana Gulf Coast.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Russell, Brook T. (3)
-
AghaKouchak, Amir (1)
-
Baggett, Jeffrey S. (1)
-
Kunkel, Kenneth E. (1)
-
Love, Charlotte A. (1)
-
McMahan, Christopher S. (1)
-
Risser, Mark D. (1)
-
Self, Stella W. (1)
-
Skahill, Brian E. (1)
-
Smith, Richard L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Self, Stella W. ; McMahan, Christopher S. ; Russell, Brook T. ( , Environmetrics)
Abstract Recently, due to accelerations in urban and industrial development, the health impact of air pollution has become a topic of key concern. Of the various forms of air pollution, fine atmospheric particulate matter (PM2.5; particles less than 2.5 micrometers in diameter) appears to pose the greatest risk to human health. While even moderate levels of PM2.5can be detrimental to health, spikes in PM2.5to atypically high levels are even more dangerous. These spikes are believed to be associated with regionally specific meteorological factors. To quantify these associations, we develop a Bayesian spatiotemporal quantile regression model to estimate the spatially varying effects of meteorological variables purported to be related to PM2.5levels. By adopting a quantile regression model, we are able to examine the entire distribution of PM2.5levels; for example, we are able to identify which meteorological drivers are related to abnormally high PM2.5levels. Our approach uses penalized splines to model the spatially varying meteorological effects and to account for spatiotemporal dependence. The performance of the methodology is evaluated through extensive numerical studies. We apply our modeling techniques to 5 years of daily PM2.5data collected throughout the eastern United States to reveal the effects of various meteorological drivers.
-
Russell, Brook T. ; Risser, Mark D. ; Smith, Richard L. ; Kunkel, Kenneth E. ( , Environmetrics)
Abstract Hurricane Harvey brought extreme levels of rainfall to the Houston, Texas, area over a 7‐day period in August 2017, resulting in catastrophic flooding that caused loss of human life and damage to personal property and public infrastructure. In the wake of this event, there has been interest in understanding the degree to which this event was unusual and estimating the probability of experiencing a similar event in other locations. Additionally, researchers have aimed to better understand the ways in which the sea surface temperature (SST) in the Gulf of Mexico (GoM) is associated with precipitation extremes in this region. This work addresses all of these issues through the development of a multivariate spatial extreme value model.
Our analysis indicates that warmer GoM SSTs are associated with higher precipitation extremes in the western Gulf Coast region during hurricane season and that the precipitation totals observed during Hurricane Harvey are less unusual based on the warm GoM SST in 2017. As SSTs in the GoM are expected to steadily increase over the remainder of this century, this analysis suggests that western Gulf Coast locations may experience more severe precipitation extremes during hurricane season.