Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Boldyreva, A. ; Kolesnikov, V. (Ed.)In recent work, Backendal, Haller, and Paterson identified several exploitable vulnerabilities in the cloud storage provider MEGA. They demonstrated an RSA key recovery attack in which a malicious server could recover a client’s private RSA key after 512 client login attempts. We show how to exploit additional information revealed by MEGA’s protocol vulnerabilities to give an attack that requires only six client logins to recover the secret key. Our optimized attack combines several cryptanalytic techniques. In particular, we formulate and give a solution to a variant of the hidden number problem with small unknown multipliers, which may be of independent interest. We show that our lattice construction for this problem can be used to give improved results for the implicit factorization problem of May and Ritzenhofen.more » « lessFree, publicly-accessible full text available May 2, 2024
-
Free, publicly-accessible full text available May 1, 2024
-
Abstract The potential impact of autonomous robots on everyday life is evident in emerging applications such as precision agriculture, search and rescue, and infrastructure inspection. However, such applications necessitate operation in unknown and unstructured environments with a broad and sophisticated set of objectives, all under strict computation and power limitations. We therefore argue that the computational kernels enabling robotic autonomy must be
scheduled andoptimized to guarantee timely and correct behavior, while allowing for reconfiguration of scheduling parameters at runtime. In this paper, we consider a necessary first step towards this goal ofcomputational awareness in autonomous robots: an empirical study of a base set of computational kernels from the resource management perspective. Specifically, we conduct a data-driven study of the timing, power, and memory performance of kernels for localization and mapping, path planning, task allocation, depth estimation, and optical flow, across three embedded computing platforms. We profile and analyze these kernels to provide insight into scheduling and dynamic resource management for computation-aware autonomous robots. Notably, our results show that there is a correlation of kernel performance with a robot’s operational environment, justifying the notion of computation-aware robots and why our work is a crucial step towards this goal. -
The shape and relative size of an ocular lens affect the focal length of the eye, with consequences for visual acuity and sensitivity. Lenses are typically spherical in aquatic animals with camera-type eyes and axially flattened in terrestrial species to facilitate vision in optical media with different refractive indices. Frogs and toads (Amphibia: Anura) are ecologically diverse, with many species shifting from aquatic to terrestrial ecologies during metamorphosis. We quantified lens shape and relative size using 179 micro X-ray computed tomography scans of 126 biphasic anuran species and tested for correlations with life stage, environmental transitions, adult habits and adult activity patterns. Across broad phylogenetic diversity, tadpole lenses are more spherical than those of adults. Biphasic species with aquatic larvae and terrestrial adults typically undergo ontogenetic changes in lens shape, whereas species that remain aquatic as adults tend to retain more spherical lenses after metamorphosis. Further, adult lens shape is influenced by adult habit; notably, fossorial adults tend to retain spherical lenses following metamorphosis. Finally, lens size relative to eye size is smaller in aquatic and semiaquatic species than other adult ecologies. Our study demonstrates how ecology shapes visual systems, and the power of non-invasive imaging of museum specimens for studying sensory evolution.more » « less
-
Abstract Pupil constriction has important functional consequences for animal vision, yet the evolutionary mechanisms underlying diverse pupil sizes and shapes are poorly understood. We aimed to quantify the diversity and evolution of pupil shapes among amphibians and to test for potential correlations to ecology based on functional hypotheses. Using photographs, we surveyed pupil shape across adults of 1294 amphibian species, 74 families and three orders, and additionally for larval stages for all families of frogs and salamanders with a biphasic ontogeny. For amphibians with a biphasic life history, pupil shape changed in many species that occupy distinct habitats before and after metamorphosis. In addition, non-elongated (circular or diamond) constricted pupils were associated with species inhabiting aquatic or underground environments, and elongated pupils (with vertical or horizontal long axes) were more common in species with larger absolute eye sizes. We propose that amphibians provide a valuable group within which to explore the anatomical, physiological, optical and ecological mechanisms underlying the evolution of pupil shape.more » « less
-
Abstract Background Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (
Lithobates sphenocephalus ), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure.Results We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments.
Conclusions Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.