skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Ryan, M.J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For complex communication signals, it is often difficult to identify the information-bearing elements and their parameters necessary to elicit functional behavior. Consequently, it may be difficult to design stimuli that test how neurons contribute to communicative processing. For tu´ngara frogs (Physalaemus pustulosus), however, previous behavioral testing with numerous stimuli showed that a particular frequency modulated (FM) transition in the male call is required to elicit phonotaxis and vocal responses. Modeled on such behavioral experiments, we used awake in vivo recordings of single units in the midbrain to determine if their excitation was biased to behaviorally important FM parameters. Comparisons of stimulus driven action potentials revealed greatest excitation to the behaviorally important FM transition: a downward FM sweep or step that crosses ~600 Hz. Previous studies using long-duration acoustic exposure found immediate early gene expression in many midbrain neurons to be most sensitive to similar FM. However, those data could not determine if FM coding was accomplished by the population and/or individual neurons. Our data suggest both coding schemes could operate, as 1) individual neurons are more sensitive to the behaviorally significant FM transition and 2) when single unit recordings are analytically combined across cells, the combined code can produce high stimulus discrimination (FM vs. noise driven excitation), approaching that found in behavioral discrimination of call vs. noise. 
    more » « less
  2. null (Ed.)
    Communication systems often include a variety of components, including those that span modalities, which may facilitate detection and decision-making. For example, female tungara frogs and fringe-lipped bats generally rely on acoustic mating signals to find male tungara frogs in a mating or foraging context, respectively. However, two additional cues (vocal sac inflation and water ripples) can enhance detection and choice behavior. To date, we do not know the natural variation and covariation of these three components. To address this, we made detailed recordings of calling males, including call amplitude, vocal sac volume and water ripple height, in 54 frogs (2430 calls). We found that all three measures correlated, with the strongest association between the vocal sac volume and call amplitude. We also found that multimodal models predicted the mass of calling males better than unimodal models. These results demonstrate how multimodal components of a communication system relate to each other and provide an important foundation for future studies on how receivers integrate and compare complex displays. 
    more » « less