skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rykaczewski, Konrad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. Abstract

    Gallium-based liquid metals (LM) have surface tension an order of magnitude higher than water and break up into micro-droplets when mixed with other liquids. In contrast, silicone oil readily mixes into LM foams to create oil-in-LM emulsions with oil inclusions. Previously, the LM was foamed through rapid mixing in air for an extended duration (over 2 hours). This process first results in the internalization of oxide flakes that form at the air-liquid interface. Once a critical fraction of these randomly shaped solid flakes is reached, air bubbles internalize into the LM to create foams that can internalize secondary liquids. Here, we introduce an alternative oil-in-LM emulsion fabrication method that relies on the prior addition of SiO2 micro-particles into the LM before mixing it with the silicone oil. This particle-assisted emulsion formation process provides a higher control over the composition of the LM-particle mixture before oil addition, which we employ to systematically study the impact of particle characteristics and content on the emulsions' composition and properties. We demonstrate that the solid particle size (0.8 µm to 5 µm) and volume fraction (1% to 10%) have a negligible impact on the internalization of the oil inclusions. The inclusions are mostly spherical with diameters of 20 to 100 µm diameter and are internalized by forming new, rather than filling old, geometrical features. We also study the impact of the particle characteristics on the two key properties related to the functional application of the LM emulsions in the thermal management of microelectronics. In particular, we measure the impact of particles and silicone oil on the emulsion's thermal conductivity and its ability to prevent deleterious gallium-induced corrosion and embrittlement of contacting metal substrates.

     
    more » « less
    Free, publicly-accessible full text available July 18, 2025
  3. Free, publicly-accessible full text available July 1, 2025
  4. Free, publicly-accessible full text available May 1, 2025
  5. Free, publicly-accessible full text available March 2, 2025
  6. Free, publicly-accessible full text available November 1, 2024
  7. Gallium-based liquid metals (LMs) are suitable for many potential applications due to their unique combination of metallic and liquid properties. However, due to their high surface tension and low viscosity, LMs are challenging to apply to substrates in useful shapes, such as dots, wires, and films. These issues are mitigated by mixing the LMs in air with other materials, such as mixing with solid particles to form LM solid pastes or mixing with gases to form LM foams. Underlying these deceivingly simple mixing processes are complex and highly intertwined microscale mechanisms. Air microbubbles are inevitably incorporated while making LM pastes, making them partly foams. On the other hand, for foaming of the LM to occur, a critical volume content of solid particles must be internalized first. Consequently, both LM pastes and foams are multiphase composites containing solid and fluid microcomponents. Here, we systematically study the impact of the mixing procedure, solid particle size, and volume fraction (SiO2) on the air content of the multiphase LM composites. We demonstrate that decreasing the particle size and increasing their volume fraction substantially decrease the composite density (i.e., increases air entrapment). The foaming process can also be enhanced with the use of high-speed mechanical mixing, although leading to the formation of a more disordered internal structure. In contrast, manual mixing with larger microparticles can promote the formation of more paste-like composites with minimal air content. We explain the microscopic mechanisms underlying these trends by correlating macroscopic measurements with cross-sectional electron microscopy of the internal structure. 
    more » « less