skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rynda-Apple, Agnieszka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Land-use change may drive viral spillover from bats into humans, partly through dietary shifts caused by decreased availability of native foods and increased availability of cultivated foods. We experimentally manipulated diets of Jamaican fruit bats to investigate whether diet influences viral shedding. To reflect dietary changes experienced by wild bats during periods of nutritional stress, Jamaican fruit bats were fed either a standard diet or a putative suboptimal diet, which was deprived of protein (suboptimal-sugar diet) and/or supplemented with fat (suboptimal-fat diet). Upon H18N11 influenza A-virus infection, bats fed on the suboptimal-sugar diet shed the most viral RNA for the longest period, but bats fed the suboptimal-fat diet shed the least viral RNA for the shortest period. Bats on both suboptimal diets ate more food than the standard diet, suggesting nutritional changes may alter foraging behaviour. This study serves as an initial step in understanding whether and how dietary shifts may influence viral dynamics in bats, which alters the risk of spillover to humans. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Streicker, Daniel G (Ed.)
    Bats are reservoirs of many zoonotic viruses that are fatal in humans but do not cause disease in bats. Moreover, bats generate low neutralizing antibody titers in response to experimental viral infection, although more robust antibody responses have been observed in wild-caught bats during times of food stress. Here, we compared the antibody titers and B cell receptor (BCR) diversity of Jamaican fruit bats (Artibeus jamaicensis; JFBs) and BALB/c mice generated in response to T-dependent and T-independent antigens. We then manipulated the diet of JFBs and challenged them with H18N11 influenza A-like virus or a replication incompetent Nipah virus VSV (Nipah-riVSV). Under standard housing conditions, JFBs generated a lower avidity antibody response and possessed more BCR mRNA diversity compared to BALB/c mice. However, withholding protein from JFBs improved serum neutralization in response to Nipah-riVSV and improved serum antibody titers specific to H18 but reduced BCR mRNA diversity. 
    more » « less
    Free, publicly-accessible full text available September 24, 2025
  3. Influenza D viruses (IDV) are known to co-circulate with viral and bacterial pathogens in cattle and other ruminants. Currently, there is limited knowledge regarding host responses to IDV infection and whether IDV infection affects host susceptibility to secondary bacterial infections. To begin to address this gap in knowledge, the current study utilized a combination of in vivo and in vitro approaches to evaluate host cellular responses against primary IDV infection and secondary bacterial infection with Staphylococcus aureus (S. aureus). Primary IDV infection in mice did not result in clinical signs of disease and it did not enhance the susceptibility to secondary S. aureus infection. Rather, IDV infection appeared to protect mice from the usual clinical features of secondary bacterial infection, as demonstrated by improved weight loss, survival, and recovery when compared to S. aureus infection alone. We found a notable increase in IFN-β expression following IDV infection while utilizing human alveolar epithelial A549 cells to analyze early anti-viral responses to IDV infection. These results demonstrate for the first time that IDV infection does not increase the susceptibility to secondary bacterial infection with S. aureus, with evidence that anti-viral immune responses during IDV infection might protect the host against these potentially deadly outcomes. 
    more » « less