skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sabo, Cobi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new nanofabrication approach is reported for the scalable production of plasmonically modulated upconverting nanoparticles, with the potential for force sensing. 
    more » « less
  2. Abstract A novel force sensor exploiting the interaction between plasmonic nanostructures and upconversion nanoparticles (UCNPs) is reported. The nanosensor is composed of a gold nanodisk and UCNPs separated by a flexible polymer layer. The gold nanodisk is designed to exhibit a plasmon resonance that selectively enhances one of the emission bands of the UCNPs while leaving the other ones largely unaffected. As the nanosensor is compressed or stretched by an external force, the polymer layer thickness changes, modulating the plasmon‐UCNP coupling. The resulting changes in the luminescence intensity provide the basis for sensing. Furthermore, the nanosensor employs ratiometric sensing, which makes it highly robust against any environmental variations. The nanosensors exhibit two orders of magnitude higher responsivity than previously reported UCNP‐based force sensors. They can be prepared as an on‐chip sensor array or in a colloidal solution, making them suitable for a variety of applications in biology and robotics. 
    more » « less