skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sadaf, Sharif_Md"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents alternate pairs of InGaN/GaN prestrained layers with varying indium compositions, which are inserted between the GaN/InGaN MQW active region and the n-GaN layer in a light-emitting diode (LED) nanostructure in order to obtain enhanced optical characteristics. The device is mounted on a silicon substrate followed by a GaN buffer layer that promotes charge injection by minimizing the energy barrier between the electrode and active layers. The designed device attains more than 2.897% enhancement in efficiency when compared with the conventional LED, which is attributed to the reduction of a polarization field within the MQW region. The proposed device with 15% indium composition in the prestrained layer attains a maximum efficiency of 85.21% and a minimized efficiency droop of 3.848% at an injection current of 40 mA, with high luminous power in the output spectral range. The device also shows a minimum blueshift in the spectral range, indicating a decrease in the piezoelectric polarization. 
    more » « less