skip to main content

Search for: All records

Creators/Authors contains: "Sadeghpour, H R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A semiclassical model describing the charge transfer collisions of C 60 fullerene with different slow ions has been developed to analyze available observations. These data reveal multiple Breit–Wigner-like peaks in the cross sections, with subsequent peaks of reactive cross sections decreasing in magnitude. Calculations of charge transfer probabilities, quasi-resonant cross sections, and cross sections for reactive collisions have been performed using semiempirical interaction potentials between fullerenes and ion projectiles. All computations have been carried out with realistic wave functions for C 60 ’s valence electrons derived from the simplified jellium model. The quality of these electron wave functions has been successfully verified by comparing theoretical calculations and experimental data on the small angle cross sections of resonant [Formula: see text] collisions. Using the semiempirical potentials to describe resonant scattering phenomena in C 60 collisions with ions and Landau–Zener charge transfer theory, we calculated theoretical cross sections for various C 60 charge transfer and fragmentation reactions which agree with experiments.
    Free, publicly-accessible full text available August 7, 2023
  2. Free, publicly-accessible full text available April 1, 2023
  3. Free, publicly-accessible full text available January 1, 2023
  4. Free, publicly-accessible full text available February 1, 2023
  5. ABSTRACT The largest uncertainty on measurements of dark energy using type Ia supernovae (SNeIa) is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved at upcoming survey telescopes, such as at the Vera C. Rubin Observatory, via a laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power laser, this excitation will produce an artificial star, which we term a ‘laser photometric ratio star’ (LPRS) of de-excitation light in the mesosphere at wavelengths in vacuum of 589.16, 589.76, 818.55, and 819.70 nm, with the sum of the numbers of 589.16 and 589.76 nm photons produced by this process equal to the sum of the numbers of 818.55 and 819.70 nm photons, establishing a precise calibration ratio between, for example, the r and $z$ filters of the LSST camera at the Rubin Observatory. This technique can thus provide a novel mechanism for establishing a spectrophotometric calibration ratio of unprecedented precision for upcoming telescopic observations across astronomy and atmospheric physics; thus greatly improving the performance of upcoming measurements of darkmore »energy parameters using type SNeIa. The second paper of this pair describes an alternative technique to achieve a similar, but brighter, LPRS than the technique described in this paper, by using two lasers near resonances at 589.16 and 819.71 nm, rather than the single 342.78 nm on-resonance laser technique described in this paper.« less
  6. ABSTRACT This paper is the second in a pair of papers on the topic of the generation of a two-colour artificial star [which we term a laser photometric ratio star (LPRS)] of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques, respectively, described in both this and the previous paper would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms for establishing a spectrophotometric calibration ratio of unprecedented precision, from above most of Earth’s atmosphere, for upcoming telescopic observations across astronomy and atmospheric physics; thus greatly improving the performance of upcoming measurements of dark energy parameters using type Ia supernovae. The technique described in this paper has the advantage of producing a much brighter (specifically, brighter by approximately a factor of 103) LPRS, using lower power (≤30 W average power) lasers, than the technique using a single 500 W average power laser described in the first paper of this pair. However, the technique described here would requiremore »polarization filters to be installed into the telescope camera in order to sufficiently remove laser atmospheric Rayleigh backscatter from telescope images, whereas the technique described in the first paper would only require more typical wavelength filters in order to sufficiently remove laser Rayleigh backscatter.« less
  7. Scattering phenomena between charged particles and highly excited Rydberg atoms are of critical importance in many processes in plasma physics and astrophysics. While a Maxwell–Boltzmann (MB) energy distribution for the charged particles is often assumed for calculations of collisional rate coefficients, in this contribution we relax this assumption and use two different energy distributions, a bimodal MB distribution and a $\unicode[STIX]{x1D705}$ -distribution. Both variants share a high-energy tails occurring with higher probability than the corresponding MB distribution. The high-energy tail may significantly affect rate coefficients for various processes. We focus the analysis to specific situations by showing the dependence of the rate coefficients on the principal quantum number of hydrogen atoms in $n$ -changing collisions with electrons in the excitation and ionization channels and in a temperature range relevant to the divertor region of a tokamak device. We finally discuss the implications for diagnostics of laboratory plasmas.
  8. We employ force-field molecular dynamics simulations to investigate the kinetics of nucleation to new liquid or solid phases in a dense gas of particles, seeded with ions. We use precise atomic pair interactions, with physically correct long-range behaviour, between argon atoms and protons. Time dependence of molecular cluster formation is analysed at different proton concentration, temperature and argon gas density. The modified phase transitions with proton seeding of the argon gas are identified and analysed. The seeding of the gas enhances the formation of nano-size atomic clusters and their aggregation. The strong attraction between protons and bath gas atoms stabilises large nano-clusters and the critical temperature for evaporation. An analytical model is proposed to describe the stability of argon-proton droplets and is compared with the molecular dynamics simulations.