Data‐driven programming models such as many‐task computing (MTC) have been prevalent for running data‐intensive scientific applications. MTC applies over‐decomposition to enable distributed scheduling. To achieve extreme scalability, MTC proposes a fully distributed task scheduling architecture that employs as many schedulers as the compute nodes to make scheduling decisions. Achieving distributed load balancing and best exploiting data locality are two important goals for the best performance of distributed scheduling of data‐intensive applications. Our previous research proposed a data‐aware work‐stealing technique to optimize both load balancing and data locality by using both dedicated and shared task ready queues in each scheduler. Tasks were organized in queues based on the input data size and location. Distributed key‐value store was applied to manage task metadata. We implemented the technique in MATRIX, a distributed MTC task execution framework. In this work, we devise an analytical suboptimal upper bound of the proposed technique, compare MATRIX with other scheduling systems, and explore the scalability of the technique at extreme scales. Results show that the technique is not only scalable but can achieve performance within 15% of the suboptimal solution. Copyright © 2015 John Wiley & Sons, Ltd.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Lang, Michael (1)
-
Li, Tonglin (1)
-
Qiao, Kan (1)
-
Raicu, Ioan (1)
-
Sadooghi, Iman (1)
-
Wang, Ke (1)
-
Zhou, Xiaobing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary