skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sadowski, Jerzy T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Functional oxides have extensively been investigated as a promising class of materials in a broad range of innovative applications. Harnessing the novel properties of functional oxides in micro‐ to nano‐scale applications hinges on establishing advanced fabrication and manufacturing techniques able to synthesize these materials in an accurate and reliable manner. Oxidative scanning probe lithography (o‐SPL), an atomic force microscopy (AFM) technique based on anodic oxidation at the water meniscus formed at the tip/substrate contact, not only combines the advantages of both “top‐down” and “bottom‐up” fabrication approaches, but also offers the possibility of fabricating oxide nanomaterials with high patterning accuracy. While the use of self‐assembled monolayers (SAMs) broadened the application of o‐SPL, significant challenges have emerged owing to the relatively limited number of SAM/solid surface combinations that can be employed for o‐SPL, which constrains the ability to control the chemistry and structure of oxides formed by o‐SPL. In this work, a new o‐SPL technique that utilizes room‐temperature ionic liquids (RTILs) as the functionalizing material to mediate the electrochemistry at AFM tip/substrate contacts is reported. The results show that the new IL‐mediated o‐SPL (IL‐o‐SPL) approach allows sub‐100 nm oxide features to be patterned on a model solid surface, namely steel, with an initiation voltage as low as −2 V. Moreover, this approach enables high tunability of both the chemical state and morphology of the patterned iron oxide structures. Owing to the high chemical compatibility of ILs, which derives from the possibility of synthesizing ILs able to adsorb on a wide variety of solid surfaces, IL‐o‐SPL can be extended to other material surfaces and provide the opportunity to accurately tailor the chemistry, morphology, and electronic properties within nanoscale domains, thus opening new pathways to the development of novel micro‐ and nano‐architectures for advanced integrated devices.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering. 
    more » « less
  3. null (Ed.)