skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Safranski, David_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Focused ultrasound (FUS) presents unique advantages for noninvasive localized heating, crucial for controlled shape recovery in shape memory polymers (SMPs), especially in biomedical applications. To enhance FUS-driven actuation efficiency, we propose boron nitride (BN)-infused SMP composites (SMPCs) tailored for targeted biomedical interventions. Using tert-butyl acrylate (tBA) and di(ethylene glycol) dimethacrylate as base materials, we integrated BN fillers at varying concentrations (1, 5, and 10 wt.%). A thorough characterization was carried out, including dynamic mechanical analysis, scanning electron microscopy, uniaxial tensile testing, and swelling study. These results show that increasing the BN content improves shape recovery efficiency significantly. Specifically, the 10 wt.% BN composites outperformed plain SMP in terms of shape recovery ratio when activated with FUS, and the highest shape recovery ratio can achieve 75%. However, higher BN content decreases crosslinking density and stiffness, as shown by a lower Young’s modulus and glass transition temperature. This study demonstrates the promise of BN-infused SMPCs for advanced applications in biomedical application, where noninvasive spatiotemporal actuation of SMPs is required. 
    more » « less