skip to main content

Search for: All records

Creators/Authors contains: "Saha, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 25, 2024
  2. null (Ed.)
  3. Abstract We report on the observations, analysis and interpretation of the microlensing event MOA-2019-BLG-008. The observed anomaly in the photometric light curve is best described through a binary lens model. In this model, the source did not cross caustics and no finite-source effects were observed. Therefore, the angular Einstein ring radius θ E cannot be measured from the light curve alone. However, the large event duration, t E ∼ 80 days, allows a precise measurement of the microlensing parallax π E . In addition to the constraints on the angular radius θ * and the apparent brightness I s of the source, we employ the Besançon and GalMod galactic models to estimate the physical properties of the lens. We find excellent agreement between the predictions of the two galactic models: the companion is likely a resident of the brown dwarf desert with a mass M p ∼ 30 M Jup , and the host is a main-sequence dwarf star. The lens lies along the line of sight to the Galactic bulge, at a distance of ≤4 kpc. We estimate that in about 10 yr the lens and source will be separated by ∼55 mas, and it will be possible to confirm the exact nature of the lensing system by using high-resolution imaging from ground- or space-based observatories. 
    more » « less
  4. We present a physics-based model for ferroelectric/negative capacitance transistors (FEFETs/ NCFETs) without an inter-layer metal between ferroelectric and dielectric in the gate stack. The model self-consistently solves 2D Poisson's equation, non-equilibrium Green's function (NEGF) based charge and transport equations, and multi-domain Landau Khalatnikov (LK) equations with the domain interaction term. The proposed simulation framework captures the variation of ferroelectric (FE) polarization (P) along the gate length due to non-uniform electric field (E) along the channel. To calibrate the LK equations, we fabricate and characterize 10nm HZO films. Based on the calibrated model, we analyze the gate/drain voltage dependence of P distribution in the FE and its effect on the channel potential and current-voltage characteristics. Our results highlight the importance of larger domain interaction to boost the benefits of FEFETs with subthreshold swing (SS) as small as ~50mV/decade achieved at room temperature. As domain interaction increases, the characteristics of FEFETs without inter-layer metal (SS, negative drain induced barrier lowering (DIBL), negative output conductance) approach those of FEFETs with inter-layer metal. 
    more » « less