skip to main content


Search for: All records

Creators/Authors contains: "Sahiner, Berkman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Astley, Susan M ; Chen, Weijie (Ed.)
    Devices enabled by artificial intelligence (AI) and machine learning (ML) are being introduced for clinical use at an accelerating pace. In a dynamic clinical environment, these devices may encounter conditions different from those they were developed for. The statistical data mismatch between training/initial testing and production is often referred to as data drift. Detecting and quantifying data drift is significant for ensuring that AI model performs as expected in clinical environments. A drift detector signals when a corrective action is needed if the performance changes. In this study, we investigate how a change in the performance of an AI model due to data drift can be detected and quantified using a cumulative sum (CUSUM) control chart. To study the properties of CUSUM, we first simulate different scenarios that change the performance of an AI model. We simulate a sudden change in the mean of the performance metric at a change-point (change day) in time. The task is to quickly detect the change while providing few false-alarms before the change-point, which may be caused by the statistical variation of the performance metric over time. Subsequently, we simulate data drift by denoising the Emory Breast Imaging Dataset (EMBED) after a pre-defined change-point. We detect the change-point by studying the pre- and post-change specificity of a mammographic CAD algorithm. Our results indicate that with the appropriate choice of parameters, CUSUM is able to quickly detect relatively small drifts with a small number of false-positive alarms. 
    more » « less
    Free, publicly-accessible full text available April 3, 2025