skip to main content


Search for: All records

Creators/Authors contains: "Sahu, Kisor K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The quality of network clustering is often measured in terms of a commonly used metric known as “modularity”. Modularity compares the clusters found in a network to those present in a random graph (a “null model”). Unfortunately, modularity is somewhat ill suited for studying spatially embedded networks, since a random graph contains no basic geometrical notions. Regardless of their distance, the null model assigns a nonzero probability for an edge to appear between any pair of nodes. Here, we propose a variant of modularity that does not rely on the use of a null model. To demonstrate the essentials of our method, we analyze networks generated from granular ensemble. We show that our method performs better than the most commonly used Newman-Girvan (NG) modularity in detecting the best (physically transparent) partitions in those systems. Our measure further properly detects hierarchical structures, whenever these are present.

     
    more » « less