skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Saibaba, Arvind K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 19, 2024
  2. Free, publicly-accessible full text available July 18, 2024
  3. Reconstructing high-resolution flow fields from sparse measurements is a major challenge in fluid dynamics. Existing methods often vectorize the flow by stacking different spatial directions on top of each other, hence confounding the information encoded in different dimensions. Here, we introduce a tensor-based sensor placement and flow reconstruction method which retains and exploits the inherent multidimensionality of the flow. We derive estimates for the flow reconstruction error, storage requirements and computational cost of our method. We show, with examples, that our tensor-based method is significantly more accurate than similar vectorized methods. Furthermore, the variance of the error is smaller when using our tensor-based method. While the computational cost of our method is comparable to similar vectorized methods, it reduces the storage cost by several orders of magnitude. The reduced storage cost becomes even more pronounced as the dimension of the flow increases. We demonstrate the efficacy of our method on three examples: a chaotic Kolmogorov flow, in situ and satellite measurements of the global sea surface temperature and three-dimensional unsteady simulated flow around a marine research vessel. 
    more » « less
  4. Abstract. Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges for standard inverse modeling frameworks that were often originally designed with much smaller data sets in mind. In this article, we discuss computationally efficient methods for large-scale atmospheric inverse modeling and focus on addressing some of the main computational and practical challenges. We develop generalized hybrid projection methods, which are iterative methods for solving large-scale inverse problems, and specifically we focus on the case of estimating surface fluxes. These algorithms confer several advantages. They are efficient, in part because they converge quickly, they exploit efficient matrix–vector multiplications, and they do not require inversion of any matrices. These methods are also robust because they can accurately reconstruct surface fluxes, they are automatic since regularization or covariance matrix parameters and stopping criteria can be determined as part of the iterative algorithm, and they are flexible because they can be paired with many different types of atmospheric models. We demonstrate the benefits of generalized hybrid methods with a case study from NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite. We then address the more challenging problem of solving the inverse model when the mean of the surface fluxes is not known a priori; we do so by reformulating the problem, thereby extending the applicability of hybrid projection methods to include hierarchical priors. We further show that by exploiting mathematical relations provided by the generalized hybrid method, we can efficiently calculate an approximate posterior variance, thereby providing uncertainty information. 
    more » « less