skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sakib, Mashnoon Alam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single photon emitters (SPEs) in hexagonal boron nitride (hBN) are elementary building blocks for room-temperature on-chip quantum photonic technologies. However, fundamental challenges, such as slow radiative decay and nondeterministic placement of the emitters, limit their full potential. Here, we demonstrate large-area arrays of plasmonic nanoresonators (PNRs) for Purcell-induced room-temperature SPEs by engineering emitter-cavity coupling and enhancing radiative emission. Gold-coated silicon pillars with an alumina spacer enable a 10-fold local-field enhancement in the emission band of native hBN defects. We observe bright SPEs with an average saturated emission rate surpassing 5 million counts per second, an average lifetime of <0.5 ns, and 29% yield. Density functional theory reveals the beneficial role of an alumina spacer between hBN and gold, mitigating the electronic broadening of emission from defects proximal to the metal. Our results offer arrays of bright, heterogeneously integrated single-photon sources, paving the way for robust and scalable quantum information systems. 
    more » « less