Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We establish the correspondence between two well-known frameworks for quantum chromodynamics (QCD) multiple scattering in nuclear media: the color glass condensate (CGC) and the high-twist (HT) expansion formalism. We argue that a consistent matching between both frameworks, in their common domain of validity, is achieved by incorporating the subeikonal longitudinal momentum phase in the CGC formalism, which mediates the transition between coherent and incoherent scattering. We perform a detailed calculation and analysis of direct photon production in proton-nucleus scattering as a concrete example to establish the matching between HT and CGC up to twist-4, including initial- and final-state interactions, as well as their interferences. The techniques developed in this work can be adapted to other processes in electron-nucleus and proton-nucleus collisions, and they provide a potential avenue for a unified picture of dilute-dense dynamics in nuclear media.more » « lessFree, publicly-accessible full text available July 1, 2026
-
The color glass condensate (CGC) effective theory and the collinear factorization at high twist (HT) are two well-known frameworks describing perturbative QCD multiple scatterings in nuclear media. It has long been recognized that these two formalisms have their own domain of validity in different kinematic regions. Taking direct photon production in proton-nucleus collisions as an example, we clarify for the first time the relation between CGC and HT at the level of a physical observable. We show that the CGC formalism beyond shock-wave approximation, and with the Landau-Pomeranchuk-Migdal interference effect is consistent with the HT formalism in the transition region where they overlap. Such a unified picture paves the way for mapping out the phase diagram of parton density in nuclear medium from dilute to dense region.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Within the color glass condensate effective field theory, we assess the importance of including a finite size for the target on observables sensitive to small- evolution. To this end, we study the Balitsky-Kovchegov (BK) equation with impact-parameter dependence in the initial condition. We demonstrate that neglecting the dependence on the impact parameter can result in overestimated saturation effects for protons, while it has little effect for heavy nuclei at the energies available at current experiments. When fixing the nonperturbative parameters to the energy dependence of the exclusive photoproduction cross section with proton targets, predictions for lead targets are not sensitive to the applied running-coupling prescription, the scheme chosen to resum large transverse logarithms in the BK equation, or the infrared regulator in the evolution.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available December 27, 2025
-
We compute the differential cross section for direct quarkonium production in high-energy electron-nucleus collisions at small . Our computation is performed within the nonrelativistic QCD factorization formalism that separates the calculation into short distance coefficients and long distance matrix elements that depend on the color and spin of the state. We obtain the short distance coefficients of the production of the heavy quark pair within the framework of the color glass condensate effective field theory, which resums coherent multiple interactions of the heavy quark pair with the nucleus to all orders. Our results are expressed as the convolution of perturbatively calculable functions with multipoint lightlike Wilson line correlators. In the correlation limit, we establish the correspondence between our color glass condensate formulation with calculations employing the transverse momentum dependent (TMD) framework. We extend this correspondence by resumming kinematic power corrections within the improved TMD framework, which interpolates between the TMD formalism and -factorization formalism. We present a detailed numerical analysis, focusing on production in the kinematics accessible at the future Electron-Ion Collider, highlighting the importance of genuine higher-order saturation contributions when the electron collides with a large nucleus. Our results are also valid in the photoproduction limit where we expect the largest contribution from genuine higher-order saturation contributions which could be accessed in ultraperipheral collisions of relativistic heavy ions. Published by the American Physical Society2024more » « less
-
A<sc>bstract</sc> We compute the differential cross-section for direct quarkonium production accompanied by a gluon in high-energy deep inelastic scattering (DIS) at small-x. We employ the Non-Relativistic QCD factorization framework, focusing on theS-wave contribution to the formation of the quarkonium, and including both color singlet and octet contributions. Our short distance coefficients for the production of the heavy quark pair are obtained within the Color Glass Condensate effective field theory. Our results pave the way towards the next-to-leading order computation of direct quarkonium in DIS, as well as the study of azimuthal correlations of direct quarkonium and jet.more » « less
An official website of the United States government
