skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sales, Laura V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We use the TNG50 from the IllustrisTNG suite of cosmological hydrodynamical simulation, complemented by a catalogue of tagged globular clusters, to investigate the properties and build up of two extended luminous components: the intra-cluster light (ICL) and the intra-cluster globular clusters (ICGCs). We select the 39 most massive groups and clusters in the box, spanning the range of virial masses $5 \times 10^{12} \lt \rm M_{200}/\rm {\rm M}_{\odot } \lt 2 \times 10^{14}$. We find good agreement between predictions from the simulations and current observational estimates of the fraction of mass in the ICL and its radial extension. The stellar mass of the ICL is only $\sim 10~{{\ \rm per\ cent}}$–20 per cent of the stellar mass in the central galaxy but encodes useful information on the assembly history of the group or cluster. About half the ICL in all our systems is brought in by galaxies in a narrow stellar mass range, M* = 1010–1011 M⊙. However, the contribution of low-mass galaxies (M* < 1010 M⊙) to the build up of the ICL varies broadly from system to system, $\sim 5~{{\ \rm per\ cent}}-45~{{\ \rm per\ cent}}$, a feature that might be recovered from the observable properties of the ICL at z = 0. At fixed virial mass, systems where the accretion of dwarf galaxies plays an important role have shallower metallicity profiles, less metal content, and a lower stellar mass in the ICL than systems where the main contributors are more massive galaxies. We show that intra-cluster GCs are also good tracers of this history, representing a valuable alternative when diffuse light is not detectable.

     
    more » « less
    Free, publicly-accessible full text available March 23, 2025
  2. ABSTRACT

    Stellar feedback plays a crucial role in regulating baryon cycles of a galactic ecosystem, and may manifest itself in the formation of superbubbles in the interstellar medium. In this work, we used a set of high-resolution simulations to systematically study the properties and evolution of superbubbles in galactic environments. The simulations were based on the SMUGGLE galaxy formation framework using the hydrodynamical moving-mesh code arepo, reaching a spatial resolution of $\sim 4 \, \rm pc$ and mass resolution of $\sim 10^3 \, \rm M_{\odot }$. We identified superbubbles and tracked their time evolution using the parent stellar associations within the bubbles. The X-ray luminosity-size distribution of superbubbles in the fiducial run is largely consistent with the observations of nearby galaxies. The size of superbubbles shows a double-peaked distribution, with the peaks attributed to early feedback (radiative and stellar wind feedback) and supernova feedback. The early feedback tends to suppress the subsequent supernova feedback, and it is strongly influenced by star formation efficiency, which regulates the environmental density. Our results show that the volume filling factor of hot gas (T > 105.5 K) is about $12~{{\ \rm per\ cent}}$ averaged over a region of 4 kpc in height and 20 kpc in radius centred on the disc of the galaxy. Overall, the properties of superbubbles are sensitive to the choice of subgrid galaxy formation models and can, therefore, be used to constrain these models.

     
    more » « less
  3. ABSTRACT

    In this study, we modify the semi-analytic model galacticus in order to accurately reproduce the observed properties of dwarf galaxies in the Milky Way. We find that reproducing observational determinations of the halo occupation fraction and mass–metallicity relation for dwarf galaxies requires us to include H2 cooling, an updated ultraviolet background radiation model, and to introduce a model for the metal content of the intergalactic medium. By fine-tuning various model parameters and incorporating empirical constraints, we have tailored the model to match the statistical properties of Milky Way dwarf galaxies, such as their luminosity function and size–mass relation. We have validated our modified semi-analytic framework by undertaking a comparative analysis of the resulting galaxy–halo connection. We predict a total of $300 ^{+75} _{-99}$ satellites with an absolute V-band magnitude (MV) less than 0 within 300 kpc from our Milky Way analogues. The fraction of subhaloes that host a galaxy at least this bright drops to 50 per cent by a halo peak mass of ∼8.9 × 107 M⊙, consistent with the occupation fraction inferred from the latest observations of Milky Way satellite population.

     
    more » « less
  4. ABSTRACT

    The velocity dispersion of globular clusters (GCs) around ultra-diffuse galaxies (UDGs) in the Virgo cluster spans a wide range, including cases where GC kinematics suggest haloes as massive as (or even more massive than) that of the Milky Way around these faint dwarfs. We analyse the catalogues of GCs derived in post-processing from the TNG50 cosmological simulation to study the GC system kinematics and abundance of simulated UDGs in galaxy groups and clusters. UDGs in this simulation reside exclusively in dwarf-mass haloes with M200 ≲ 1011.2 M⊙. When considering only GCs gravitationally bound to simulated UDGs, we find GCs properties that overlap well with several observational measurements for UDGs. In particular, no bias towards overly massive haloes is inferred from the study of bound GCs, confirming that GCs are good tracers of UDG halo mass. However, we find that contamination by intracluster GCs may, in some cases, substantially increase velocity dispersion estimates when performing projected mock observations of our sample. We caution that targets with less than 10 GC tracers are particularly prone to severe uncertainties. Measuring the stellar kinematics of the host galaxy should help confirm the unusually massive haloes suggested by GC kinematics around some UDGs.

     
    more » « less
  5. The study of dynamically cold stellar streams reveals information about the gravitational potential where they reside and provides important constraints on the properties of dark matter. However, the intrinsic faintness of these streams makes their detection beyond Local environments highly challenging. Here, we report the detection of an extremely faint stellar stream (μg, max= 29.5 mag arcsec−2) with an extraordinarily coherent and thin morphology in the Coma Galaxy Cluster. This Giant Coma Stream spans ∼510 kpc in length and appears as a free-floating structure located at a projected distance of 0.8 Mpc from the center of Coma. We do not identify any potential galaxy remnant or core, and the stream structure appears featureless in our data. We interpret the Giant Coma Stream as being a recently accreted, tidally disrupting passive dwarf. Using the Illustris-TNG50 simulation, we identify a case with similar characteristics, showing that, although rare, these types of streams are predicted to exist in Λ-CDM. Our work unveils the presence of free-floating, extremely faint and thin stellar streams in galaxy clusters, widening the environmental context in which these objects are found ahead of their promising future application in the study of the properties of dark matter.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  6. Abstract We present Keck/DEIMOS spectroscopy of the first complete sample of ultradiffuse galaxies (UDGs) in the Virgo cluster. We select all UDGs in Virgo that contain at least 10 globular cluster (GC) candidates and are more than 2.5 σ outliers in scaling relations of size, surface brightness, and luminosity (a total of 10 UDGs). We use the radial velocity of their GC satellites to measure the velocity dispersion of each UDG. We find a mixed bag of galaxies, from one UDG that shows no signs of dark matter, to UDGs that follow the luminosity–dispersion relation of early-type galaxies, to the most extreme examples of heavily dark matter–dominated galaxies that break well-known scaling relations such as the luminosity–dispersion or U-shaped total mass-to-light ratio relations. This is indicative of a number of mechanisms at play forming these peculiar galaxies. Some of them may be the most extended version of dwarf galaxies, while others are so extreme that they seem to populate dark matter halos consistent with that of the Milky Way or even larger. Even though Milky Way stars and other GC interlopers contaminating our sample of GCs cannot be fully ruled out, our assessment of this potential problem and simulations indicate that the probability is low and, if present, unlikely to be enough to explain the extreme dispersions measured. Further confirmation from stellar kinematics studies in these UDGs would be desirable. The lack of such extreme objects in any of the state-of-the-art simulations opens an exciting avenue of new physics shaping these galaxies. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  7. Abstract

    Elongated bar-like features are ubiquitous in galaxies, occurring at the centers of approximately two-thirds of spiral disks in the nearby Universe. Due to gravitational interactions between the bar and the other components of galaxies, it is expected that angular momentum and matter will redistribute over long (Gyr) timescales in barred galaxies. Previous work ignoring the gas phase of galaxies has conclusively demonstrated that bars should slow their rotation over time due to their interaction with dark matter halos. We have performed a simulation of a Milky Way–like galactic disk hosting a strong bar, including a state-of-the-art model of the interstellar medium and a live dark matter halo. In this simulation, the bar pattern does not slow down over time, and instead it remains at a stable, constant rate of rotation. This behavior has been observed in previous simulations using more simplified models for the interstellar gas, but the apparent lack of secular evolution has remained unexplained. We find that the presence of the gas phase arrests the process by which the dark matter halo slows down a bar, a phenomenon we term bar locking. This locking is responsible for stabilizing the bar pattern speed. We find that, in a Milky Way–like disk, a gas fraction of only about 5% is necessary for this mechanism to operate. Our result naturally explains why nearly all observed bars rotate rapidly and is especially relevant for our understanding of how the Milky Way arrived at its present state.

     
    more » « less
  8. ABSTRACT

    Star-forming galaxies like the Milky Way are surrounded by a hot gaseous halo at the virial temperature – the so-called galactic corona – that plays a fundamental role in their evolution. The interaction between the disc and the corona has been shown to have a direct impact on accretion of coronal gas onto the disc with major implications for galaxy evolution. In this work, we study the gas circulation between the disc and the corona of star-forming galaxies like the Milky Way. We use high-resolution hydrodynamical N-body simulations of a Milky Way-like galaxy with the inclusion of an observationally motivated galactic corona. In doing so, we use SMUGGLE, an explicit interstellar medium (ISM), and stellar feedback model coupled with the moving-mesh code arepo. We find that the reservoir of gas in the galactic corona is sustaining star formation: the gas accreted from the corona is the primary fuel for the formation of new stars, helping in maintaining a nearly constant level of cold gas mass in the galactic disc. Stellar feedback generates a gas circulation between the disc and the corona (the so-called galactic fountain) by ejecting different gas phases that are eventually re-accreted onto the disc. The accretion of coronal gas is promoted by its mixing with the galactic fountains at the disc–corona interface, causing the formation of intermediate temperature gas that enhances the cooling of the hot corona. We find that this process acts as a positive feedback mechanism, increasing the accretion rate of coronal gas onto the galaxy.

     
    more » « less
  9. ABSTRACT

    We study the formation of ultradiffuse galaxies (UDGs) using the cosmological hydrodynamical simulation TNG50 of the Illustris-TNG suite. We define UDGs as dwarf galaxies in the stellar mass range $\rm {7.5 \le log (M_{\star } / {\rm M}_{\odot }) \le 9 }$ that are in the 5 per cent most extended tail of the simulated mass–size relation. This results in a sample of UDGs with half-mass radii $\rm {r_{h \star } \gtrsim 2 \ kpc}$ and surface brightness between $\rm {24.5}$ and $\rm {28 \ mag \ arcsec^{-2}}$, similar to definitions of UDGs in observations. The large cosmological volume in TNG50 allows for a comparison of UDGs properties in different environments, from the field to galaxy clusters with virial mass $\rm {M_{200} \sim 2 \times 10^{14} ~ {\rm M}_{\odot }}$. All UDGs in our sample have dwarf-mass haloes ($\rm {M_{200}\sim 10^{11} ~ {\rm M}_{\odot } }$) and show the same environmental trends as normal dwarfs: field UDGs are star-forming and blue while satellite UDGs are typically quiescent and red. The TNG50 simulation predicts UDGs that populate preferentially higher spin haloes and more massive haloes at fixed $\rm {M_{\star }}$ compared to non-UDG dwarfs. This applies also to most satellite UDGs, which are actually ‘born’ UDGs in the field and infall into groups and clusters without significant changes to their size. We find, however, a small subset of satellite UDGs ($\lesssim 10~{{\ \rm per\ cent}}$) with present-day stellar size a factor ≥1.5 larger than at infall, confirming that tidal effects, particularly in the lower mass dwarfs, are also a viable formation mechanism for some of these dwarfs, although sub-dominant in this simulation.

     
    more » « less